Journal of the Korean Data and Information Science Society
/
v.18
no.2
/
pp.385-399
/
2007
In many image processing applications, a random noise makes some trouble since most video enhancement functions produce visual artifacts if a priori of the noise is incorrect. The basic difficulty is that the noise and the signal are difficult to be distinguished. Typical unsharp masking (UM) enhances the visual appearances of images, but it also amplifies the noise components of the image. Hence, the applications of a UM are limited when noises are presented. This paper proposed statistical algorithms based on parametric and nonparametric tests to adaptively enhance the image feature and the noise combining while applying UM. With the proposed algorithm, it is made possible to enhance the local contrast of an image without amplifying the noise.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.6
/
pp.909-914
/
2002
In this thesis, noise reduction of image with impulse noise in circle image removed noise to harness existing median filter for noise reduction from image data of damage by noise when impulse noise is high or noise reduction is low, but it is not made up of noise reduction to harness existing median filter in case of existence of non-impulse noise. Therefore noise reduction of image with non-impulse noise had to remove noise by morphological arithmetic in this thesis's proposition. In contrast to median filtering, result of edge detection is more efficient after remove non-impulse noise by method of thesis's proposition and it compare and demonstrate through this experimentation.
This study aim of quantitative assessment of Noise Power Spectrum(NPS) and image characteristics of by acquired the optimal image for noise characteristics and quality assurance by using magnetic resonance imaging(MRI). MRI device was (MAGNETOM Vida 3.0T MRI; Siemense healthcare system; Germany) used and the head/neck shim MR receive coil were 20 channels coil and a diameter 200 mm hemisphere phantom. Frequency signal could be acquired the K-space trajectory image and white image for NPS. The T2 image highest quantitatively value for NPS finding of showed the best value of 0.026 based on the T2 frequency of 1.0 mm-1. The NPS acquired of showed that the T1 CE turbo image was 0.077, the T1 CE Conca2 turbo image was 0.056, T1 turbo image was 0.061, and the T1 Conca2 turbo image was 0.066. The assessment of NPS image characteristics of this study were to that could be used efficiently of the MRI and to present the quantitative evaluation methods and image noise characteristics of 3.0T MRI.
The aim of this study was to design fast non local means (FNLM) noise reduction algorithm and to confirm its application feasibility in light microscopic image. For that aim, we acquired mouse first molar image and compared between previous widely used noise reduction algorithm and our proposed FNLM algorithm in acquired light microscopic image. Contrast to noise ratio, coefficient of variation, and no reference-based evaluation parameter such as natural image quality evaluator (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE) were used in this study. According to the result, our proposed FNLM noise reduction algorithm can achieve excellent result in all evaluation parameters. In particular, it was confirmed that the NIQE and BRISQUE evaluation parameters for analyzing the overall morphologcal image of the tooth were 1.14 and 1.12 times better than the original image, respectively. In conclusion, we demonstrated the usefulness and feasibility of FNLM noise reduction algorithm in light microscopic image of small animal tooth.
Chitwong S.;Minhayenud S.;Intajag S.;Cheevasuvit F.
Proceedings of the KSRS Conference
/
2004.10a
/
pp.574-576
/
2004
Since variance of noise is important parameter for a noise filter to reduce noise in image and the performance of noise filter is dependent on estimated variance. In this paper, we apply additive noise variance estimation method to estimate variance of speckle noise of synthetic aperture radar (SAR) imagery. Generally, speckle noise is in multiplicative model, logarithmic transformation is then used to transform multiplicative model into additive model. Here, speckle noise is generally modeled as Gamma distribution function with different looks. The additive noise variance estimation is processed in log domain. The synthesis image and real image of SAR are implemented to test and confirm results and show that more accurate estimation can be achieved.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.05a
/
pp.346-349
/
2017
Digital image processing is widely used in a variety of areas, and noise elimination is used as the preprocessing in all the image processing processes. Degradation is occurred in the image data due to multiple reasons. Degradation is to add the noise in the image signal, and salt and pepper noise is the representative one to cause degradation. Therefore, image restoration algorithm was proposed to process with histogram weight filter and median filter by the noise density of local mask to restore the damaged image in the salt and pepper noise environment, in this article. In addition, it was compared with the existing methods using peak signal to noise ratio(PSNR) as the objective determination factor of improvement effect.
International Journal of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.7-13
/
2021
Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.2
/
pp.376-381
/
2009
The image data compression, recognition, restoration, etc. are parts of the digital image processing technology. In the process by various devices, noises would be made. Because the noise could damage the image, we use the image filter to preserve the original image from the noise. The image filter used in digital image process basically has a two-dimensional structure. There an two methods of creating the filter - One is reiterating one dimension and the other is using an indivisible two-dimension image filter. The image filter is being widely used along with one-dimension filter according to each noise, and various median filters are being used to remove the impulse noise. In this paper, I suggested a powerful modified median filter, and compared with conventional filters for objective verification.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.4
/
pp.949-956
/
2014
Recently, with the development of hardware and software technology related with image information delivery, the demand for various multimedia service has increased. But, the process of treating, sending, and storing image signals generates image degradation by various external causes. The main cause of image degradation is noise. image is mostly damaged by AWGN (additive white Gaussian noise). Therefore, there have been active researches on noise elimination. This paper, to reduce the effects of AWGN added to the image, suggests a noise-eliminating algorithm which is excellent in low-frequency and high-frequency characteristics in space. And, this paper, through simulation techniques, compared the result of the suggested algorithm with those of the existing methods. And, to evaluate the performance of it, PSNR (peak signal to noise ratio) was used.
The paper clarifies all the noise sources of a CMOS image sensor, with which the GOCI (Geostationary Ocean Color Imager) is equipped, and analyzes their contribution to a nonlinear image sensor model. In particular, the noise PDF (Probability Density Function) is derived in terms of sensor-gain coefficients: a linear and a nonlinear gains. As a result, the relation between the noise characteristic and the sensor gains is studied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.