• Title/Summary/Keyword: noise detector

Search Result 707, Processing Time 0.03 seconds

A Study on the Design and Fabrication of Phase Locked Dielectric Resonance Oscillator (위상고정 유전체 공진형 발진기의 설계 및 제작에 관한 연구)

  • Seo Gon;Park hang-Hyun;Kim Jang-Gu;Choi Byung-Ha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.25-32
    • /
    • 2005
  • In this papers, we first, therefore, designed VCO(voltage controlled oscillator) that is composed of the dielectric resonator and the varactor diode, and then designed and fabricated PLDRO(phase locked dielectric resonator oscillator) that is combined with the sampling phase detector and loop filter. The measured results of the fabricated PLDRO at 12.05 [GHz] show the output power is 13.54 [dBm], frequency tuning range approximately +/- 7.5 [MHz], and Power variation over the tuning range less than 0.2 [dB], respectively. The phase noise which effects on bits error rate in digital communication is obtained with -114.5 [dBc/Hz] at 100 [KHz] offset from carrier, and The second harmonic suppression is less than -41.49 [dBc]. These measured results are found to be more improved than those of VCO without adopting PLL, and the phase noise and power variation performance characteristics show the better performances than those of conventional PLL.

Effects of Field Configuration Shielding Area and Changing of Density and Sensitivity on Tube Current and Image Quality in Automatic Exposure Control System (자동노출제어장치의 채광창 차폐정도와 농도, 감도의 변화가 관전류량과 영상품질에 미치는 영향)

  • Jeong, Min-Gyu;Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.635-642
    • /
    • 2020
  • The purpose of this study was to analysis the effects of shielding area of field configuration with changing of sensitivity and density on tube current (milliampere-seconds, mAs) and image quality in automatic exposure control (AEC) system. The equipment used a digital radiography device (Digital Diagnost, Philips, Netherlands), which has a integral type with an X-ray tube and an indirect digital detector. The AEC system conditions were consisted of 9 setting environments, that mode changing of the sensitivity (S200, S400, S800) and the density (+2.5, 0, -2.5). The tube current evaluated automatically exposed mAs under 81 combination conditions crossed by AEC conditions in fixed at 40 kVp. The image quality evaluated the radiographic images that selected valid images by visual assessment the radiographic images of the self-produced conical pyramid phantom and then measured their signal to noise ratio (SNR). As a result, the maximum tube current was 60.0 mAs that automatically exposed conditions were the 100% of shielding area and the sensitivity of S200 and the density of +2.5. The minimum tube current was 0.9 mAs with non-shielding area and the sensitivity of S800 and the density of -2.5. When the shielded area 0% with the sensitivity of S200 and the density of +2.5, the maximum SNR was the highest as 25.2. But when the shielded area 25% with the sensitivity of S800 and the density of -2.5, the minimum SNR was the lowest as 4.7.

New Frequency-domain GSC using the Modified-CFAR Algorithm (변형된 CFAR 알고리즘을 이용한 새로운 주파수영역 GSC)

  • Cho, Myeong-Je;Moon, Sung-Hoon;Han, Dong-Seog;Jung, Jin-Won;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.96-107
    • /
    • 1999
  • The generalized sidelobe cancellers(GSC's) ar used for suppressing an interference in array radar. The frequency-domain GSC's have a faster convergence rate than the time-domain GSC's because they remove the correlation between the interferences using a frequency-domain least mean square(LMS) algorithm. However, we have not fully used the advantage of the frequency-domain GSC's since we have always updated the weights of all frequency bins, even the interferer free frequency bin. In this paper, we propose a new frequency-domain GSC based on constant false-alarm rate(CFAR) detector, of which GSC adaptively determine the bin whose weight is updated according to the power of each frequency bin. This canceller updates the weight of only updated according to the power of each frequency bin. This canceller updates the weight of only the bin of which the power is high because of the interference signal. The computer simulation shows that the new GSC reduces the iteration number for convergence over the conventional GSC's by more than 100 iterations. The signal-to-noise ration(SNR) improvement is more than 5 dB. Moreover, the number of renewal weights required for the adaptation is much fewer than that of the conventional one.

  • PDF

An Improved Movable 3 photomultiplier (3PM)-γ Coincidence Counter Using Logical Sum of Double Coincidences in β-Channel for Activity Standardization

  • Hwang, Han Yull;Lee, Jong Man
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.76-80
    • /
    • 2020
  • Background: To improve the measurement accuracy of liquid-scintillation counting for activity standardization, it is necessary to significantly reduce the background caused by thermal noise or after-pulses. We have therefore improved a movable 3 photomultiplier (3PM)-γ coincidence-counting method using the logical sum of three double coincidences for β events. Materials and Methods: We designed a new data-acquisition system in which β events are obtained by counting the logical sum of three double coincidences. The change in β-detection efficiency can be derived by moving three photomultiplier tubes sequentially from the liquid-scintillation vial. The validity of the method was investigated by activity measurement of 134Cs calibrated at the Korea Research Institute of Standards and Science (KRISS) with 4π(PC)β-γ(NaI(Tl)) coincidence counting using a proportional counter (PC) for the β detector. Results and Discussion: Measurements were taken over 14 counting intervals for each liquidscintillation sample by displacing three photomultiplier tubes up to 45 mm from the sample. The dead time in each β- and γ-counting channel was adjusted to be a non-extending type of 20 ㎲. The background ranged about 1.2-3.3 s-1, such that the contributions of thermal noise or after-pulses were negligible. As the β-detection unit was moved away from the sample, the β-detection efficiencies varied between 0.54 and 0.81. The result obtained by the method at the reference date was 396.3 ± 1.7 kBq/g. This is consistent with the KRISS-certified value of 396.0 ± 2.0 kBq/g within the uncertainty range. Conclusion: The movable 3PM-γ method developed in the present work not only succeeded in reducing background counts to negligible levels but enabled β-detection efficiency to be varied by a geometrical method to apply the efficiency extrapolation method. Compared with our earlier work shown in the study of Hwang et al. [2], the measurement accuracy has much improved. Consequently, the method developed in this study is an improved method suitable for activity standardization of β-γ emitters.

Wide-area Surveillance Applicable Core Techniques on Ship Detection and Tracking Based on HF Radar Platform (광역감시망 적용을 위한 HF 레이더 기반 선박 검출 및 추적 요소 기술)

  • Cho, Chul Jin;Park, Sangwook;Lee, Younglo;Lee, Sangho;Ko, Hanseok
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.313-326
    • /
    • 2018
  • This paper introduces core techniques on ship detection and tracking based on a compact HF radar platform which is necessary to establish a wide-area surveillance network. Currently, most HF radar sites are primarily optimized for observing sea surface radial velocities and bearings. Therefore, many ship detection systems are vulnerable to error sources such as environmental noise and clutter when they are applied to these practical surface current observation purpose systems. In addition, due to Korea's geographical features, only compact HF radars which generates non-uniform antenna response and has no information on target information are applicable. The ship detection and tracking techniques discussed in this paper considers these practical conditions and were evaluated by real data collected from the Yellow Sea, Korea. The proposed method is composed of two parts. In the first part, ship detection, a constant false alarm rate based detector was applied and was enhanced by a PCA subspace decomposition method which reduces noise. To merge multiple detections originated from a single target due to the Doppler effect during long CPIs, a clustering method was applied. Finally, data association framework eliminates false detections by considering ship maneuvering over time. According to evaluation results, it is claimed that the proposed method produces satisfactory results within certain ranges.

The Evaluation of Image Quality and Radiation Dose in Multi-Detector CT (MDCT에서 화질과 방사선량에 관한 연구)

  • Han, Dong-Kyoon;Yang, Han-Joon;Kim, Moon-Chan;Ko, Shin-Gwan
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.129-138
    • /
    • 2007
  • The Purpose of this study is to suggest the basic data for making good quality image and maintaining equipment homeostasis by accepting image quality evaluation and radiation dose evaluation in Multi-detector CT. In this study we surveyed 14 CT equipments in Seoul. The results obtained were as follows ; CT number was $0.56{\pm}0.70\;HU$. Noise was $0.39{\pm}0.09\;HU$. Uniformity was $1.08{\pm}0.52\;HU$. High contrast resolution was $0.48{\pm}0.05\;mm$ and low contrast resolution was $3.65{\pm}1.16\;mm$. For CTDI, the central part and the peripheral part of head phantom were $43.2{\pm}15.4\;mGy$ and $45.6{\pm}17.5\;mGy$, respectively. For body phantom, the central part and the peripheral part of head phantom were $13.5{\pm}4.5$ and $29.2{\pm}10.2\;mGy$, respectively. CTDIw was $44.8{\pm}16.8\;mGy$ and CTDIw/100 mAs was $18.8{\pm}5.3\;mGy$ using head phantom. CTDIW was $24.0{\pm}8.3\;mGy$ and CTDIw/100 mAs was $10.1{\pm}2.5\;mGy$ using body phantom. Therefore, CT number, noise, high contrast resolution, low contrast resolution, CTDI, CTDIw and CTDIw/100 mAs of MDCT were showed excellently in all equipments.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.

A Study on Public Nuisance in Seoul, Pusan and Daegu Cities Part I. Survey on Air Pollution and Noise Level (공해(公害)에 관(關)한 조사연구(調査硏究) 제일편(第一編) : 서울, 부산(釜山), 대구(大邱) 지역(地域)의 대기오염(大氣汚染) 및 소음(騷音)에 관(關)한 비교조사(比較調査) 연구(硏究))

  • Cha, Chul-Hwan;Shin, Young-Soo;Lee, Young-Il;Cho, Kwang-Soo;Choo, Chong-Yoo;Kim, Kyo-Sung;Choi, Dug-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.4 no.1
    • /
    • pp.41-64
    • /
    • 1971
  • During the period from July 1st to the end of November 1970, a survey on air pollution and noise level was made in Seoul, Pusan and Taegu, the three largest cities in Korea. Each city was divided into 4-6 areas; the industrial area, the semi-industrial area, the commercial area, the residential area, the park area and the downtown area. Thirty eight sites were selected from each area. A. Method of Measurement : Dustfall was measured by the Deposit Gauge Method, sulfur oxides by $PbO_2$ cylinder method, suspended particles by the Digital Dust Indicator, Sulfur dioxide ($SO_2$) and Carbon Monoxide (CO) by the MSA & Kitakawa Detector and the noise levels by Rion Sound Survey meter. B. Results: 1. The mean value of dustfall in 3 cities was $30.42ton/km^2/month$, ranging from 8.69 to 95.44. 2. The mean values of dustfall by city were $33.17ton/km^2/month$ in Seoul, 32.11 in Pusan and 25.97 in Taegu. 3. The mean values of dustfall showed a trend of decreasing order of semi-industrial area, downtown area, industrial area, commercial area, residential area, and park area. 4. The mean value of dustfall in Seoul by area were $52.32ton/km^2/month$ in downtown, 50.54 in semi-industrial area, 40.37 in industrial area, 24,19 in commercial area, 16.25 in park area and 15.39 in residential area in order of concentration. 5. The mean values of dustfall in Pusan by area were $48.27ton/km^2/month$ in semi-industrial area, 36.68 in industrial area 25.31 in commercial area, and 18.19 in residential area. 6. The mean values of dustfall in Taegu by area were $36.46ton/km^2/month$ in downtown area, 33.52 in industrial area, 20.37 in commercial area and 13.55 in residential area. 7. The mean values of sulfur oxides in 3 cities were $1.52mg\;SO_3/day/100cm^2\;PbO_2$, ranging from 0.32 to 4.72. 8. The mean values of sulfur oxides by city were $1.89mg\;SO_3/day/100cm^2\;PbO_2$ in Pusan, 1.64 in Seoul and 1.21 in Taegu. 9. The mean values of sulfur oxides by area in 3 cities were $2.16mg\;SO_3/day/100cm^2\;PbO_2$ in industrial area, 1.69 in semi-industrial area, 1.50 in commercial area, 1.48 in downtown area, 1.32 in residential area and 0.94 in the park area, respectively. 10. The monthly mean values of sulfur oxides contents showed a steady increase from July reaching a peak in November. 11. The mean values of suspended particles was $2.89mg/m^3$, ranging from 1.15 to 5.27. 12. The mean values of suspended particles by city were $3.14mg/m^3$ in Seoul, 2.79 in Taegu and 2.25 in Pusan. 13. The mean values of noise level in 3 cities was 71.3 phon, ranging from 49 to 99 phon. 14. The mean values of noise level by city were 73 phon in Seoul, 72 in Pusan, and 69 in Taegu in that order. 15. The mean values of noise level by area in 3 cities showed a decrease in the order of the downtown area, commercial area, industrial area and semi-industrial area, park area and residential area. 16. The comparison of the noise levels by area in 3 cities indicated that the highest level was detected in the downtown area in Seoul and Taegu and in the industrial area in Pusan. 17. The daily average concentration of sulfur dioxides ($SO_2$) in 3 cities was 0.081 ppm, ranging from 0.004 to 0.196. 18. The daily average concentrations of sulfur dioxides by city were 0.092 ppm in Seoul, 0.089 in Pusan and 0.062 in Taegu in that order. 19. The weekly average concentration of carbon monoxides(CO) was 27.59 ppm. 20. The daily average concentrations of carbon monoxides by city were 33.37 ppm. in Seoul, 25.76 in Pusan and 23.65 in Taegu in that order. 21. The concentration of $SO_2$ and CO reaches a peak from 6 p. m. to 8 p. m. 22. About 3 times probably the daily average concentration of CO could be detected in the downtown area probably due to heavy traffic emission in comparison with that in the industial area. 23. As for daily variation of the concentration of $SO_2$ and CO it was found that the concentration maintains relatively higher value during weekdays in the industrial area and on the first part of the week in the downtown area.

  • PDF

A Study on Public Nuisance in Kwangju City (Survey on Air Pollution and Noise Level) (공해(公害)에 관(關)한 조사연구(調査硏究) -광주시(光州市)의 대기오염(大氣汚染) 및 소음(騷音)에 관(關)한 조사연구(調査硏究)-)

  • Chung, Yo-Han;Kim, Kil-Wng;Moon, Jae-Kyu;Jhoo, Heung-Kyu
    • Journal of Preventive Medicine and Public Health
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1972
  • During the period from June 1st 1971 to November 30 th 1971, studies on air pollution were made in Kwangju city. The city was divided into 6 areas; the downtown area, the semi-downtown area, the heavy traffic area, the commercial area, the residential area, the park area, 13 surveying sites were selected each representing the characteristics of the area. The Measurement methods which were used are described below. Sulfur oxides were measured by $PbO_2$ cylinder method, sulfur dioxides ($SO_2$) and carbon monoxide (CO) by the MSA & Kitakwa detector, dustfall by the Deposit gauge method, and the noise levels by the Kanomax soundlevel meter. The results obtained are as follows: 1. The mean value of sulfur oxides in Kwangju city was $1.16mg\;SO_3/day/100cm^2\;PbO_2$, ranging from $0.45mg\;SO_3/day/100cm^2\;PbO_2$ to $3.10mg\;SO_3/day/100cm^2\;PbO_2$. 2. The mean values of sulfur oxides according to its specific area in the city were $1.45mg\;SO_3/day/100cm^2\;PbO_2$ in heavy traffic area, 1.36 in downtown area, 1.23 in semi-downtown area, 1.11 in commercial area, 0.96 in residential area, and 1.07 in park area, respectively. 3. The average concentration of sulfur dioxide was 0.063 ppm from 2 to 5 P.M in Kwangju city. 4. The average concentrations of sulfur dioxides according to its specific area, from 2 to 5 P.M, in the city were 0.084 ppm in heavy traffic area & downtown area, 0.067 in commercial area, 0.053 in semi-downtown area, 0.052 in residential area, and 0.036 in park area. 5. The average concentration of carbon monoxide was 22.3 ppm from 2 to 5 P.M, in Kwangju city. 6. The average concentrations of carbon monoxide according to its specific area, from 2 to 5 P.M, in the city were 27.0 ppm in downtown area, 26.3 in semi-downtown area, 23.0 in heavy traffic area, 21.7 in commercial area, 20.0 in residential arera, and 17.6 in park area. 7. The mean value of dusifall in Kwangju city was $29.28ton/km^2/month$, ranging from $9.85ton/km^2/month$ to $66.34ton/km^2/month$. 8. The mean values of dustfall according to its specific area in the city were $50.37ton/km^2/month$ in semi-downtown area, 42.76 in heavy traffic area, 34.67 in downtown area, 17.77 in commercial area, 14.40 in park area, and 14.76 in residential area. 9. The mean values of the soluble dust in Kwangju city was $10.23ton/Km^2/month$ and that of the insoluble dust was $19.05ton/Km^2/month$. 10. The mean value of noise level in Kwangju city was 62 phon, ranging from 37 phon to 88 phon. 11. The mean values of noise level according to its specific area in the city were 76 phon in heavy traffic area, 67 in semi-downtown area, 64 in downtown area, 59 in commercial area, 52 in part area, and 50 in residential area.

  • PDF