• Title/Summary/Keyword: noise covariance

Search Result 169, Processing Time 0.022 seconds

Asymptotics for realized covariance under market microstructure noise and sampling frequency determination

  • Shin, Dong Wan;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.411-421
    • /
    • 2016
  • Large frequency limiting distributions of two errors in realized covariance are investigated under noisy and non-synchronous high frequency sampling situations. The first distribution characterizes increased variance of the realized covariance due to noise for large frequency and the second distribution characterizes decreased variance of the realized covariance due to discretization for large frequency. The distribution of the combined error enables us to determine the sampling frequency which depends on a nuisance parameter. A consistent estimator of the nuisance parameter is proposed.

Online estimation of noise parameters for Kalman filter

  • Yuen, Ka-Veng;Liang, Peng-Fei;Kuok, Sin-Chi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.361-381
    • /
    • 2013
  • A Bayesian probabilistic method is proposed for online estimation of the process noise and measurement noise parameters for Kalman filter. Kalman filter is a well-known recursive algorithm for state estimation of dynamical systems. In this algorithm, it is required to prescribe the covariance matrices of the process noise and measurement noise. However, inappropriate choice of these covariance matrices substantially deteriorates the performance of the Kalman filter. In this paper, a probabilistic method is proposed for online estimation of the noise parameters which govern the noise covariance matrices. The proposed Bayesian method not only estimates the optimal noise parameters but also quantifies the associated estimation uncertainty in an online manner. By utilizing the estimated noise parameters, reliable state estimation can be accomplished. Moreover, the proposed method does not assume any stationarity condition of the process noise and/or measurement noise. By removing the stationarity constraint, the proposed method enhances the applicability of the state estimation algorithm for nonstationary circumstances generally encountered in practice. To illustrate the efficacy and efficiency of the proposed method, examples using a fifty-story building with different stationarity scenarios of the process noise and measurement noise are presented.

The Analysis of The Kalman Filter Noise Factor on The Inverted Pendulum (도립진자 모델에서 칼만 필터의 잡음인자 해석)

  • Kim, Hoon-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2010
  • The Optimal results of Kalman Filtering on the Inverted Pendulum System requires an effective factor such as the noise covariance matrix Q, the measurement noise covariance matrix R and the initial error covariance matrix $P_0$. We present a special case where the optimality of the filter is not destroyed and not sensitive to scaling of these covariance matrix because these factors are unknown or are known only approximately in the practical situation. Moreover, the error covariance matrices issued by this method predict errors in the state estimate consistent with the scaled covariance matrices and not the issued state estimates. Various results using the scalar gain $\delta$ are derived to described the relations among the three covariance matrices, Kalman Gain and the error covariance matrices. This paper is described as follows: Section III a brief overview of the Inverted Pendulum system. Section IV deals with the mathematical dynamic model of the system used for the computer simulation. Section V presents a various simulation results using the scalar gain.

A Fast Algorithm for Real-time Adaptive Notch Filtering

  • Kim, Haeng-Gihl
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.189-193
    • /
    • 2003
  • A new algorithm is presented for adaptive notch filtering of narrow band or sine signals for embedded among broad band noise. The notch filter is implemented as a constrained infinite impulse response filter with a minimal number of parameters, Based on the recursive prediction error (RPE) method, the algorithm has the advantages of the fast convergence, accurate results and initial estimate of filter coefficient and its covariance is revealed. A convergence criterion is also developed. By using the information of the noise-to-signal power, the algorithm can self-adjust its initial filter coefficient estimate and its covariance to ensure convergence.

A Scalar Adaptive Filter Considering Acceleration for Navigation of UAV (무인기의 항법을 위한 가속도를 고려한 적응 스칼라 필터)

  • Lim, Jun-Kyu;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This paper presents a novel scalar adaptive filter, which is reformulated by additional acceleration term. The filter continuously estimates three different kinds of covariance such as the measurement noise covariance, the velocity error covariance and the acceleration error covariance. For estimating three covariances, we use the innovation method for the measurement noise covariance and the least square method for other covariances. In order to verify the proposed filter performance compared with the conventional scalar adaptive filter, we make indoor experimental environment similar to outdoor test using the ultrasonic sensors instead of GPS. Experimental results show that the proposed filter has better position accuracy than the traditional scalar adaptive filter.

Identification of Noise Covariance by using Innovation Correlation Test (이노베이션 상관관계 테스트를 이용한 잡음인식)

  • Park, Seong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.305-307
    • /
    • 1992
  • This paper presents a technique, which identifies both process noise covariance and sensor noise covariance by using innovation correlation test. A correlation test, which checks whether the square root Kalman filter is workingly optimal or not, is given. The system is stochastic autoregressive moving-average model with auxiliary white noise Input. The linear quadratic Gaussian control is used for minimizing stochastic cost function. This paper indentifies Q, R, and estimates parametric matrics $A(q^{-1}),B(q^{-1}),C(q^{-1})$ by means of extended recursive least squares and model reference control. And The proposed technique has been validated in simulation results on the fourth order system.

  • PDF

A new mthod for high resolution DOA systems (고해상도 DOA 시스템을 위한 새로운 방법 제안)

  • 고학임;문대철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.340-346
    • /
    • 1996
  • In this paper, we propose a ne weighted backward covariance matrix method to enhance the resolution for direction-of-arrival(DOA) estimation. The proposed method (MEVM:modified eigenvector method) is an enhanced covariance matrix method which is an extended form of the conventional covariance matrix. We analyze the effect of using the weighted forward-baskward covariance matrix on the performance of the eigenvector method(EVM). By comparing the perturbation angle of the noise-subspace, we show that the spectral estimate obtained using the proposed method is less distorted than the spectral estimate obtained using the conventional EVM. The simulation results show that the new method is more accurate and has better resolution than the conventional EVM under the same noise conditions.

  • PDF

A Simplified Li-ion Battery SOC Estimating Method

  • Zhang, Xiaoqiang;Wang, Xiaocheng;Zhang, Weiping;Lei, Geyang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • The ampere-hour integral method and the open circuit voltage method are integrated via the extended Kalman filter method so as to overcome insufficiencies of the ampere-hour integral method and the open circuit voltage method for estimating battery SOC. The process noise covariance and the measurement noise covariance of the extended Kalman filter method are simplified based on the Thevenin equivalent circuit model, with a proposed simplified SOC estimating method. Verification of DST experiments indicated that the battery SOC estimating method is simple and feasible, and the estimated SOC error is no larger than 2%.

Improving Covariance Based Adaptive Estimation for GPS/INS Integration

  • Ding, Weidong;Wang, Jinling;Rizos, Chris
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.259-264
    • /
    • 2006
  • It is well known that the uncertainty of the covariance parameters of the process noise (Q) and the observation errors (R) has a significant impact on Kalman filtering performance. Q and R influence the weight that the filter applies between the existing process information and the latest measurements. Errors in any of them may result in the filter being suboptimal or even cause it to diverge. The conventional way of determining Q and R requires good a priori knowledge of the process noises and measurement errors, which normally comes from intensive empirical analysis. Many adaptive methods have been developed to overcome the conventional Kalman filter's limitations. Starting from covariance matching principles, an innovative adaptive process noise scaling algorithm has been proposed in this paper. Without artificial or empirical parameters to be set, the proposed adaptive mechanism drives the filter autonomously to the optimal mode. The proposed algorithm has been tested using road test data, showing significant improvements to filtering performance.

  • PDF

Modified Kalman Filter Method for the Position Estimation of an Autonomous Mobile Robot (자율이동 로봇의 위치추정을 위한 변형된 칼만필터 방식)

  • Eom, Ki-Hwan;Kang, Seong-Ho;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.781-790
    • /
    • 2008
  • In order to improve on the divergence by noise convariance in the Kalman filter position estimation, we propose a method of position estimating through compensating the autonomous mobile robot's noise. Proposed method is the modified Kalman filter using neural network. It is prevented the divergence by the estimation of measurement noise covariance and system noise covariance. In order to verify the effectiveness of the proposed method, we performed simulations and experiments for position estimation. The results show that convergence and position error is reduced than the Kalman filter method.