• Title/Summary/Keyword: noise absorbing

Search Result 215, Processing Time 0.039 seconds

A Study on material performance tests of track noise absorber (도상흡음재의 재료성능 시험결과에 관한 고찰)

  • Kim, Jin-Ho;Lee, Kwang-Do;Kim, In-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1821-1826
    • /
    • 2008
  • The construction of concrete slab track system is increased recently because the system has advantages which are maintenance free and so on. However, the noise level on slab track is 3 db(A) higher than the one on ballast track since most of noise is reflected on slab track. Currently, concrete slab track systems has been designed for Gyungbu high speed line stage 2 and Honam high speed line. For those tracks, noise absorbing blocks are considered. Therefore, test methods and proper criteria for structural performance and reduction efficiency of noise absorbing blocks are required. In this study, tests were performed according to established test methods and criteria in previous study and the results have done comparative analysis.

  • PDF

The development of piezoelectric smart panels for wide range transmission noise reduction (광대역 전달 소음저감을 위한 지능패널의 개발)

  • Lee, Joong-Kuen;Kim, Jae-Hwan;Cheong, Chae-Cheon;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1273-1279
    • /
    • 2000
  • A new concept of piezoelectric smart panels for noise reduction in wide band frequencies is proposed and their possibility is experimentally investigated. The proposed panels are based on active and passive methods. They use piezoelectric smart structure technology for active noise reduction at low band frequencies and passive sound absorbing materials for mid-range of noise frequencies. To prove the concept of piezoelectric smart panels, an acoustic measurement experiment was performed. The smart panels exhibit a good noise reduction in middle and high frequency ranges due to the mass effects of absorbing materials or/and the air gap. The use of piezoelectric smart panel renders noise reduction large at resonance frequency. Another concept of smart panel that uses piezoelectric damping is experimentally investigated. Since piezoelectric dampings can reduce vibration and noise at resonance frequencies with simple shunt circuit, they have merits in terms of economy and simplicity. Dissipated energy method(DEM) is adopted to tune the shunt circuit precisely in piezoelectric dampings. Noise reduction at multiple resonance frequencies is demonstrated.

  • PDF

A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous absorbing Materials (다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구)

  • Heo, Sung-Wook;Lee, Dong-Hoon;Kim, Wook;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.388.1-388
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several companments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method fur various combinations of perforated Plates, airspaces or porous materials. (omitted)

  • PDF

Noise Barrier Design for Increased Sound Absorption (흡음률 증가를 위한 방음벽 구조)

  • Kim Hyun-Sil;Kim Jae-Seung;Kang Hyun-Joo;Kim Bong-Ki;Kim Sang-Ryul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.367-370
    • /
    • 2001
  • Various shapes of the noise barrier frame and construction of the sound absorbing panels are studied. It is found that insertion of the sound absorbing panel into barrier frame results in the decrease of the sound absorption coefficient, while the empty frame shows a peak around 250Hz. Using double sound absorbing panels with air gap can increase sound absorption coefficient up to NRC 0.85.

  • PDF

Prediction of the acoustic performance of the two-dimensional dissipative silencer with the propagation of sound in the absorbent (흡음재 내부의 음향전파가 고려된 2차원 흡음형 소음기의 음향성능 예측)

  • 김회전;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.870-873
    • /
    • 2003
  • This research is about the sound attenuation in the duct with lining sound absorbing material in it. Many previous researches assumed the property of lining material as locally-reacting. As the thickness of lining material thickens or the upper limit of the interested frequency range goes higher, there is a growing tendency for the experiment results to deviate from the theoretical results based on the locally reacting assumption. In this paper, the acoustic performance of the two-dimensional dissipative silencer with the propagation of sound in the absorbent was derived theoretically and calculated. The effect of increase of sound absorbing material is also considered. These results are compared from the previous results with using the locally-reacting property of sound absorbing material.

  • PDF

Investigation of isolation system in recoil type weapon (주퇴작용식 발사기구의 완충특성 해석)

  • 김상균;박영필;양현석;김효준;최의중;이성배;류봉조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-108
    • /
    • 2002
  • In this study, the dynamic absorbing system for the shoulder-fired system with high-level-impact force has been investigated. for this purpose, firstly, mathematical model based on the short recoil system has been constructed. In order to design the dynamic absorbing system, parameter sensitivity analysis and parameter optimization process have been performed under constraints of moving displacement and transmitted force. In order to enhance the efficiency of energy dissipation, the stroke-dependent variable damping system has been analyzed. finally, the performance of the designed dynamic absorbing system has been evaluated by simulation with respect to the benchmark system.

  • PDF

Prediction of transmission loss of parallelepiped plenum chambers with liner (흡음재가 부착된 직방형 소음기의 전달 손실 예측)

  • 김회전;이정권;박철민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.383-386
    • /
    • 2003
  • This paper deals with transmission loss of 3-dimensional rectangular plenum lined chamber. There are three kinds of rectangular plenum lined chamber: throughflow type, flow-reversal type, and end-in/side-out type. The combination of above three types of rectangular plenum lined chamber is used for the commercial HVAC system and automobile exhaust system. However, the ambiguity and complexity of sound absorbing material property and 3-dimensional property have impeded research. In this paper, the transmission loss of three kinds of rectangular plenum lined chamber is derived and calculated. The effect of increase of sound absorbing material is also considered. Analytical solution is calculated by using the locally-reacting property of sound absorbing material.

  • PDF

A Study on the Identification of Noise Source and the Noise Reduction Method of a Turbo Chiller (터보냉동기의 소음원 파악 및 저소음화에 대한 연구)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we identify the noise source and the path of a chiller. This chiller is newly developed for R-l34a refrigerant and 250 RT cooling capacity. The measured overall SPL of the developed turbo-chiller is about 100 dBA. Due to the high rotating speed of the centrifugal impeller, the nun noise source of the chiller is the blade passing frequency and its higher harmonics of the centrifugal impeller. This generated soundpropagates through the duct, and then transmits and radiates to the outer field. From the experiment, it is found that the high frequency noise is mostlytransmitted and radiated through the elbow duct, but the low frequency noise is transmitted and vadiated through the condenser wall. Therefore applying the absorbing material is an effective way of reducing the high and low frequency noise simultaneously. Measurement results show that the application of the sound absorbing material to the elbow duct reduced the overall sound pressure level by 4 dB compared to the 9 dBA reduction for the case of full enclosure. In order to control the generated noise, a dissipativetype silencer is also designed and tested. The silencer reduced the radiated noise about 7.5 dBA.

A Study on the Effects of Absorptive Treatments for the Highway Noise Barriers (도로교통소음의 방음벽 흡음효과에 관한 연구)

  • 김재석;루이스칸;김갑수
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • To mitigate excessive noise from highways, and high speed rail road, it is often necessary to construct a noise barrier. Absorptive barroer attenuation solution is obtained for the problem of diffration of a plane wave sound source by a semi-infinite plane. A finite region in the vicinity of the edge has an highly absorbing boundary condition ; the remaining portion of the half plane is rigid. The problem which is solved is a mathematical model for a hard barrier with an absorbing edge. If the wavelength of the sound is much smaller than the length scale associated with the barrier, the diffraction process is governed to all intents and purpose by the solution to a standard problem of diffraction by a semi-infinite hard plane with an absorbent edge. It is concluded that the absorbing material that comprises the edge need only be of the order of a wavelength long to have approximately the same effect, on the sound attenuation in the shadow side of the barrier. Traffic noise is composed of thousands of sources with varying frequency content. To simplify noise predictions when barriers are present, an effective frequency of 550Hz may be used to represent all vehicles. The wavelength of sound at f=550Hz for traffic noise is about 2 feet. According to the above conclusion, an absorptive highway noise barrier is only needed to cover to cover approximately a 2 foot length of absorbing material. It would be more economical to cover only the region in the immediate vicinity of the edge with highly sound obsorbent material.

  • PDF

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀롤로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-oh;Kim, Kyoung-woo;Yang, Kwan-seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF