• Title/Summary/Keyword: node positioning

Search Result 92, Processing Time 0.029 seconds

A Reliable Route Selection Algorithm in Mobile Ad-hoc Networks (이동 애드혹 네트워크에서의 안정 경로 선택 알고리즘)

  • Kim, Won-Ik;Suh, Young-Joo;An, Syung-Og
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.314-323
    • /
    • 2002
  • The routing protocols designed for wired networks can hardly be used for mobile ad-hoc networks due to limited bandwidth of wireless transmission and unpredictable topological change. Recently, several routing protocols for mobile ad-hoc networks have been Proposed. However, when theme protocols are applied to support real time services like multimedia transmission, they still have problems in ad-hoc networks, where the topology changes drastically. In this paper, we propose a new route selection algorithm which selects the most reliable route that is impervious to route failures by topological changes by mobile hoots. For reliable route selection, the concept of virtual zone (stable zone and caution zone) is proposed. The zone is located in a mobile node'transmission range and determined by mobile node's mobility information received by Global Positioning System (GPS). The proposed algorithm is applied to the route discovery procedure of the existing on-demand routing protocol, AODV, and evaluated by simulation in various traffic conditions and mobility patterns.

A Border Line-Based Pruning Scheme for Shortest Path Computations

  • Park, Jin-Kyu;Moon, Dae-Jin;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.939-955
    • /
    • 2010
  • With the progress of IT and mobile positioning technologies, various types of location-based services (LBS) have been proposed and implemented. Finding a shortest path between two nodes is one of the most fundamental tasks in many LBS related applications. So far, there have been many research efforts on the shortest path finding problem. For instance, $A^*$ algorithm estimates neighboring nodes using a heuristic function and selects minimum cost node as the closest one to the destination. Pruning method, which is known to outperform the A* algorithm, improves its routing performance by avoiding unnecessary exploration in the search space. For pruning, shortest paths for all node pairs in a map need to be pre-computed, from which a shortest path container is generated for each edge. The container for an edge consists of all the destination nodes whose shortest path passes through the edge and possibly some unnecessary nodes. These containers are used during routing to prune unnecessary node visits. However, this method shows poor performance as the number of unnecessary nodes included in the container increases. In this paper, we focus on this problem and propose a new border line-based pruning scheme for path routing which can reduce the number of unnecessary node visits significantly. Through extensive experiments on randomly-generated, various complexity of maps, we empirically find out optimal number of border lines for clipping containers and compare its performance with other methods.

Design of Real-Time Monitoring System for Recycling Agricultural Resourcing Based on USN

  • Ji, Geun-Seok;Min, Byoung-Won;Oh, Yong-Sun;Mishima, Nobuo
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.22-29
    • /
    • 2013
  • In this paper, we propose a integrated real-time monitoring system for recycling agriculture resourcing based on USN. We design and implement the monitoring system so that we can integrate the quality control of farmyard and liquid manures, barn environment monitoring, and positioning information control into a total management system performing recycling of excrement and manure. Selection of sensors and sensor-node construction and requirements, structure of wire/wireless communication networks, and design of monitoring program are also presented. As a result of operating our system, we can get over various drawbacks of conventional separated system and promote the proper circulation of excrement up to the farmyard. We confirm that these advanced effects arise from the effective management of the total system integrating quality control of farmyard/liquid manure, barn/farmhouse information, and vehicle moving monitoring information etc. Moreover, this monitoring system is able to exchange real-time information throughout communication networks so that we can construct a convenient information environment for agricultural community by converging IT technology with farm and stockbreeding industries. Finally we present some results of processing using our monitoring system. Sensing data and their graphs are processed in real-time, positioning information on the v-world map offers various moving paths of vehicles, and statistical analysis shows all the procedure from excrement occurrence to recycling and resourcing.

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

Group based DV-Hop localization Algorithm in Wireless Sensor Network (그룹 기반의 DV-HoP 무선 센서네트워크 위치측정 알고리즘)

  • Kim, Hwa-Joong;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.65-75
    • /
    • 2009
  • In Wireless Sensor Network, the sensor node localization is important issue for information tracking, event detection, routing. Generally, in wireless sensor network localization, the absolute positions of certain anchor nodes are required based on the use of global positioning system, then all the other nodes are approximately localized using various algorithms based on a coordinate system of anchor DV-Hop is a localized, distributed, hop by hop positioning algorithm in wireless sensor network where only a limited fraction of nodes have self positioning capability. However, instead of uniformly distributed network, in anisotropic network with possible holes, DV-Hop's performance is very low. To address this issue, we propose Group based DV-Hop (GDV-Hop) algorithm. Best contribution of GDV-Hop is that it performs localization with reduced error compared with DV-Hop in anisotropic network.

GPS Accuracy Revision Using RSSI and AoA in Wireless Sensor Network (무선 센서 네트워크에서 RSSI와 AoA를 활용한 GPS 정밀도 향상 방안)

  • Cho, Hae-Min;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.889-896
    • /
    • 2022
  • Data required in a wireless sensor network environment requires more accurate figures as technology advances and its complexity increases. However, in the case of operating a large number of sensor nodes in a large area, the balance between the power consumed and the data quality that can be acquired accordingly should be considered for that purpose. In particular, in complex, densely populated urban areas or military operations with specific goals, location data requires increasingly detailed and high accuracy over a wide range. In this paper, we propose a method of mounting a Global Positioning System(: GPS) only on some of the sensor nodes deployed in the wireless sensor network and improving the error of GPS location data measured on that sensor node through Angle of Arrival(: AoA) and Received Signal Strength Indicator(: RSSI).

An Indirect Localization Scheme for Low- Density Sensor Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 저밀도 센서 노드에 대한 간접 위치 추정 알고리즘)

  • Jung, Young-Seok;Wu, Mary;Kim, Chong-Gun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Each sensor node can know its location in several ways, if the node process the information based on its geographical position in sensor networks. In the localization scheme using GPS, there could be nodes that don't know their locations because the scheme requires line of sight to radio wave. Moreover, this scheme is high costly and consumes a lot of power. The localization scheme without GPS uses a sophisticated mathematical algorithm estimating location of sensor nodes that may be inaccurate. AHLoS(Ad Hoc Localization System) is a hybrid scheme using both GPS and location estimation algorithm. In AHLoS, the GPS node, which can receive its location from GPS, broadcasts its location to adjacent normal nodes which are not GPS devices. Normal nodes can estimate their location by using iterative triangulation algorithms if they receive at least three beacons which contain the position informations of neighbor nodes. But, there are some cases that a normal node receives less than two beacons by geographical conditions, network density, movements of nodes in sensor networks. We propose an indirect localization scheme for low-density sensor nodes which are difficult to receive directly at least three beacons from GPS nodes in wireless network.

A study on the discriminant analysis of node deployment based on cable type Wi-Fi in indoor (케이블형 Wi-Fi 기반 실내 공간의 노드 배치 판별 분석에 관한 연구)

  • Zin, Hyeon-Cheol;Kim, Won-Yeol;Kim, Jong-Chan;Kim, Yoon-Sik;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.836-841
    • /
    • 2016
  • An indoor positioning system using Wi-Fi is essential to produce a radio map that combines the indoor space of two or more dimensions, the information of node positions, and etc. in processing for constructing the radio map, the measurement of the received signal strength indicator(RSSI) and the confirmation of node placement information counsume substantial time. Especially, when the installed wireless environment is changed or a new space is created, easy installation of the node and fast indoor radio mapping are needed to provide indoor location-based services. In this paper, to reduce the time consumption, we propose an algorithm to distinguish the straight and curve lines of a corridor section by RSSI visualization and Sobel filter-based edge detection that enable accurate node deployment and space analysis using cable-type Wi-Fi node installed at a 3 m interval. Because the cable type Wi-Fi is connected by a same power line, it has an advantage that the installation order of nodes at regular intervals could be confirmed accurately. To be able to analyze specific sections in space based on this advantage, the distribution of the signal was confirmed and analyzed by Sobel filter based edge detection and total RSSI distribution(TRD) computation through a visualization process based on the measured RSSI. As a result to compare the raw data with the performance of the proposed algorithm, the signal intensity of proposed algorithm is improved by 13.73 % in the curve section. Besides, the characteristics of the straight and the curve line were enhanced as the signal intensity of the straight line decreased by an average of 34.16 %.

The development of indoor location measurement System using Zigbee and GPS (Zigbee와 GPS를 이용한 실내 위치 인식 시스템 개발)

  • Ryu, Jeong-Tak;Kim, In-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • This paper proposes a new indoor location recognition system using a ZigBee network and a global positioning system(GPS). The proposed location recognition system applies GPS values that are mainly used for outdoor location recognition, to indoor location recognition; hence the techniques conventionally separated for the indoor and outdoor location recognition are integrated into one location recognition technique. The proposed system recognizes a location using the distance between nodes. Although the distance between nodes can be calculated by measuring the strength of the received ZigBee signals, generally the measured distance is not accurate and has high error rates since the strength of the ZigBee signals is different depending on the distance. In order to reduce the error rate, we have subdivided the output power of the received ZigBee signals into five levels. When a moving node generates a signal, each fixed node transmits the received signal strength and its own GPS information to other nodes, so the moving node can find its own accurate location in terms of the received signals.

Real-time Locating Method Applicable to the Mobile Node Partially Out of Communication Reachability (통신 도달성이 결여된 이동노드의 실시간 위치인식 방법)

  • Lee, Kyou-Ho;Jang, Won-Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2463-2470
    • /
    • 2010
  • In some cases of u-health services, it is important and then required to pursue the location of users in real time because users could occasionally be in the situation beyond self-regulation. Location positioning has used two such typical techniques as trilateration and fingerprinting. A trilateration technique is usually based on three resident coordinates to identify the location of the target node. Ranging that measures distances between coordinates and the node is essential for applying the trilateration technique. Users especially in u-health services could be out of reachability in any such reasons as out of propagation ranges, fault of a communication counterpart, non-existence of possible communication facility, etc. This paper proposes a real-time locating method which can improve to identify and track the location of mobile objects. The method is based on references of identified mobile nodes as well as resident coordinates even though they may be partially out of communication reachability.