• Title/Summary/Keyword: nodal displacement

Search Result 106, Processing Time 0.019 seconds

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

Papers : Three - dimensional assumed strain solid element for piezoelectric actuator/sensor analysis (3 차원 가정변형률 솔리드 요소를 이용한 압전 작동기/감지기 해석)

  • Jo, Byeong-Chan;Lee, Sang-Gi;Park, Hun-Cheol;Yun, Gwang-Jun;Gu, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • The paper deals with a fully assumed strain soild element that can be used for modeling of thin sensors and actuators. To solve fully coupled field problems, the eledtric potential is regarded as a nodal degree of freedom in addition to three translations in an eighteen node assumed strain soild element. Therefore, the induced electric potential can be calculated for a prescribed load and the actuation displacement can be computed for an input voltage. Since the assumed strain solid element can alleviate locking. A finite element code is developed based on the formulation and typical numerical examples are solved for code validation. Using the code, we have conducted parametric study for THUNDER actuator. It is found that a particular combination of materials for layer curvature of THUNDER improves the actuation displacement.

Stress Intensity Factor of Single Edge Cracked Plates Considering Materials and Geometry of Patch by p-Convergent Partial Layerwise Model (p-수렴 부분층별모델에 의한 일변균열판의 패치재료 및 기하형상에 따른 응력확대계수)

  • Ahn, Hyeon-Ji;Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.191-198
    • /
    • 2010
  • This study investigated that the stress reduction of single edge cracked plates with patch repairs according to different type of patching such as material, size and thickness of patch and adhesive as well as single sided or double sided patches. As a numerical tool, the p-convergent partial layerwise model has been employed. The proposed model is formulated by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacements across thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. Also, total strain energy release rate method is adopted to obtain stress intensity factors. Numerical examples are presented not only to demonstrate the stress reduction effect in terms of non-dimensional stress intensity factor and deflection with respect to different type of patch repairs, but also the accuracy of proposed model.

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

An Elastic Static Analysis of Curved Girder Bridges by the Displacement Method (변위법(變位法)에 의한 곡선형교(曲線桁橋)의 정적탄성해석(靜的彈性解析))

  • Chung, Jin Hwan;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.121-131
    • /
    • 1986
  • The stiffness matrix of circularly curved frame elements including the warping effects is formulated by the solutions of vlasov's differential equations, and the procedure for the elastic static analysis of curved girder systems by the displacement method is presented. The validity of this method has been demonstrated by comparing the analysis results with other solutions. And if the tangential lines of the two frame element axes connected at any nodal point coincide, the transformation to the global coordinate system can be omitted when we analyze the structures consisting of circularly curved elements. The theory introduced in this thesis can be applied with sufficient accuracy to the structures built up with horizontally circular curved frame elements which have closed or open cross sections and are symmetric to the axis perpendicular to the plane of the curvature, such as prestressed concrete box girder bridges.

  • PDF

A Geometrically Nonlinear Analysis of the Curved Shell Considering Large Displacements and Large Rotation Increments (대변위 및 대회전을 고려한 만곡된 쉘의 기하학적 비선형 해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 1992
  • This paper presents geometrically nonlinear formulation of shell problems using the three-dimensional curved shell element, which includs large displacements and large rotations. Formulations of the geometrically nonlinear problems can be derived in a variety of ways, but most of them have been obtained by assuming that nodal rotations are small. Hence, the tangent stiffness matrix is derived under the assumptions that rotational increments are infinitesimal and the effect of finite rotational increments have to be considered during the equilibrium iterations. To study the large displacement and large rotation problems, the restrictions are removed and the formulations of the curved shell element including the effect of large rotational increments are developed in this paper. The displacement based finite element method using this improved formulation are applied to the analyses of the geometrically nonlinear behaviors of the single and double curved shells, which are compared with the results by others.

  • PDF

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.

Bending Moment Calculation Method and Optimum Element Size for Finite Element Analysis with Continuum Elements (연속체 요소를 사용한 유한요소해석의 휨 모멘트 계산 방법 및 최적의 요소 크기)

  • Heo, Ji-Hye;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • When designing a reinforced concrete member using nonlinear finite element analysis results, the bending moment at the critical section should be calculated. In this paper, a bending moment calculation method using the results of reinforced concrete finite element analysis(FEA) using continuum elements is presented and the optimum element size according to the order of the displacement function of the finite element is proposed. The bending moments calculated by integrating the stresses from the FEA are compared with the bending moments calculated using the static equilibrium conditions. In the method of integrating the stress, both the stress due to the reinforcing bar and the stress of the concrete are considered. In addition, various factors affecting the accuracy of the stresses calculated by the FEA were analyzed and the influence of the displacement function and the element size was verified. If the purpose of the analysis is to roughly observe the behavior of the members, it is appropriate to use the first order displacement function and the element size should be about 25% of the section height of the analytical model. When the bending moment of a member with high accuracy is required, it is suggested that the secondary displacement function be used and the element size be 12.5%.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.