In this study, catalyst was made through incipient wetness method using palladium (Pd) as noble metal, indium (In) as secondary metal, and montmorillonite (MK10) and Al pillared montmorillonite (Al-MK10) as supporters. The nitrate reduction rate of the catalysts was measured by batch experiments where H2 gas was used as reducing agent and formic acid as pH controller. Transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were all used to determine the elemental distribution of Pd, In, Al, and Si on catalysts. It was observed that Al pillaring increased the Al/Si elemental composition ratio and point of zero charge of MK10, but decreased its BET specific surface area and pore volume. The nitrate reduction rate of Al-MK10 Pd/In was 2.0 ~ 2.5 times higher than that of MK10 Pd/In using artificial groundwater (GW) in ambient temperature and pressure. Nitrate reduction rates in GW were 1.2 ~ 1.7 times lower than those in distilled deionized water (DDW). Nitrate reduction rates in acidic conditions were higher than those in neutral condition in both GW and DDW. The amount of produced NH3-N over degraded NO3- at acid conditions was lower than that of neutral condition. Even though the leaching of Pd after reaction was measured in DDW it was not detected when both Al-MK10 Pd/In and MK10 Pd/In were used in GW. The modification of montmorillonite as a supporter significantly increased the reductive catalytic activities of nitrates. However, the ratio of producing ammonia by-products to degraded nitrates in ambient temperature and pressure was similar.
바이오매스는 현재 석유, 천연가스, 석탄 등 화석 연료에서 얻을 수 있는 액체 연료와 유기 화합물을 생산할 수 있는 지속 가능한 대체 자원이다. 화석 연료를 사용하면 온실가스를 배출하기 때문에 바이오매스와 같은 탄소중립적 원료를 사용하는 것은 기후 변화 대응에 기여할 수 있다. 바이오매스 원료로부터 석유 대체 화학 제품과 연료를 생산하기 위한 생물학적 및 화학적 공정이 제안되었지만, 바이오매스에 포함된 높은 산소 함량때문에 화석 연료를 완전히 대체하기 어렵다. 석유와 유사한 연료와 화학 물질을 생산하려면 바이오매스 파생물에 존재하는 산소 원자를 제거하거나 산소 기능기를 전환해야 하며, 이는 촉매 화학적 수첨탈산소화에 의해 달성될 수 있다. 바이오매스 열분해 오일, 리그노셀룰로오스 유래 화학물질, 지질과 같은 원료를 탈산소 연료 및 화학물질로 전환하기 위해 수첨탈산소화가 진행되었다. 높은 표면적의 금속 산화물 또는 탄소에 지지된 귀금속 및 전이 금속으로 구성된 다기능성 촉매는 효율적인 수첨탈산소 촉매로 사용되었다. 본 총설에서는 문헌에서 제안된 촉매를 확인하고 이러한 촉매를 이용한 수첨탈산소 반응 시스템이 논의하였다. 문헌에 보고된 수첨탈산소화 방법을 기반으로, 실현 가능한 수첨탈산소화 공정 개발 방향이 제시하였다.
There have been significant improvements in base oil quality in order to satisfy recent market needs. In particular requirements of passenger car motor oils have been leading the trend. Now, high quality base oils such as VHVI base oils and PAOs are to be formulated in order to meet the tight volatility specifications. The severe hydrocracking, hydro-isomerized dewaxing and hydro-finishing process with noble-metal based catalysts (named UCO lube process) developed by SK corporation has been introduced as one of economic hydroprocessing routes to produce high quality VHVI base oils and food grade white mineral oils from fuels hydrocracker residue. Product quality of UCO lube process is similar to PAO in. general performances and therefore provides satisfactory performance far all straightforward applications in general lubricants. However, when applied to specialty lubricants like transformer oils, spray oils and coning oils, severely hydrocracked base oils are known to have various compatibility problems with gas or surfactants formulated in them. These problems are related to the difference in their composition; inherent high paraffin contents and lack of dissolving ability, Fortunately, it was found that excellent specialty lubricants could be made by carefully selecting and formulating adequate additives and/or aromatic compounds. Moreover, these specialties with high quality VHVI base oils ofter various advantages over conventional base oil based products.
탄소는 비표면적이 매우 크고 우수한 화학적 안정성을 지녀 촉매 지지체로 사용한 연구들이 활발히 진행되고 있다. 탄소를 지지체로 사용하는데 있어 전처리 과정은 필수적이다. 전처리를 통해 금속 입자의 성장을 제어해 안정화하고 지지체와 금속 입자 간 결합력을 향상시킬 수 있다. 본 연구에서는 표면 개질을 위해 탄소의 전처리를 실시하였으며 이를 촉매 지지체로 사용해 5 wt% Pd/C 촉매를 합성하였다. 제조된 촉매의 활성은 페놀 수소화 반응을 통해 평가되었다. 탄소 전처리 시 일반적으로 사용되는 질산과 비교하고자 유기산을 사용해 탄소 전처리를 진행하였고 이를 지지체로 사용해 촉매를 제조하였다. 글루콘산으로 처리된 촉매는 94.93%의 전환율과 92.76%의 사이클로헥사논 선택도를 나타내 질산으로 처리된 촉매보다 우수한 활성을 나타냈다. 따라서 유기산을 이용한 탄소의 전처리가 무기산 처리의 단점을 개선하는 것뿐만 아니라 촉매 성능 개선에 도움을 줄 수 있을 것으로 기대된다.
대부분의 LNT 촉매는 낮은 온도 영역에서의 NOx 산화를 위하여 Pt와 같은 귀금속류를 사용하는 것은 경제적인 부담을 가지고 있다. 따라서, 본 연구는 이러한 문제를 해결하기 위하여 시도되었다. 즉, Pt, Pd, Rh 등과 같은 귀금속류(platinum group metal, PGM)를 사용하지 않는 LNT (lean NOx trap)용 DeNOx 촉매를 개발하기 위해 시도하였다. 이를 위해서 예비실험을 통해 Pt등 귀금속류등의 PGM (platinum group metal)을 사용하지 않는 Al/Co/Ni 혼합 금속 산화물을 선정하였다. 궁극적으로는, 선정된 촉매의 소성온도에 따른 물리화학적 특성 변화가 NOx 전환율에 미치는 영향을 살펴보고자 하였다. 이들의 물리화학적인 성질을 평가하기 위해 XRD, EDS, SEM, BET 분석을 실시하였다. 이러한 평가를 실시한 결과, 모든 소성온도에서 혼합금속 산화물은 Co2AlO4 및 NiAl2O4의 스피넬 구조가 혼재되어 있는 것으로 나타났고, NOx 기체들의 산화-환원 반응이 이루어지기에는 충분한 기공부피와 기공크기를 갖고 있음을 알 수 있었다. 그러나 NH3-TPD 분석 결과에서는 소성온도가 700 ℃ 이하를 유지해야 하는 것으로 판단되었다. 더욱이 ramp test를 통해서는 NO 및 NOx 전환율을 동시에 만족할 수 있는 시료는 소성온도는 500 ℃에서 처리된 경우임을 알 수 있었다. 이러한 결과 등을 바탕으로, Al/Co/Ni=1.0/2.5/0.3 혼합 금속 산화물의 최적 소성온도는 500 ℃임을 알 수 있었다.
Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.
The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.
Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.
최근 촉매 소각 공정은 휘발성 유기 화합물을 저온(< 450 ℃)에서 고효율(> 95%)로 산화 및 분해하기 위해 상당한 주목을 받고 있다. 많은 귀금속 촉매 물질이 잘 연구되어 사용되고 있으나 단가가 비싸고 위험하다. 본연구에서는 Cu와 Mn 전구체의 공침법을 활용하여 간단하고 손쉬운 합성 방법을 개발함으로써 고활성 및 저비용의 Cu-Mn 바이메탈 촉매를 제조하였다. 촉매 합성은 Cu와 Mn의 조성비를 조절하여 최적화하였다. 최적화된 촉매는 메조포러스 구조로 230.8 m2/g의 넓은 표면적을 나타냈다. 촉매 성능을 입증하기 위해 에틸 아세테이트의 산화 반응에 대해 Cu-Mn 촉매를 테스트했으며, 250 ℃의 저온에서 100%의 높은 전환 효율을 나타내었다.
Kim, Myoung-Hee;Lee, Jun;Cha, Hyo Chang;Shin, Joong-Hyeok;Woo, Hee-Gweon
통합자연과학논문집
/
제2권1호
/
pp.18-23
/
2009
This minireview provides the chosen examples of our recent discoveries in the polymerization of hydrosilanes, dihydrosilole, lactones, and vinyl derivatives using various catalysts. Hydrosilanes and lactones copolymerize to give poly(lactone-co-silane)s with $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., $AgNO_3$, $Ag_2SO_4$, $HAuCl_4$, $H_2PtCl_6$) to give nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. $Cp_2M/CX_4$ (M = Fe, Co, Ni; X = Cl, Br, I) combination initiate the polymerization of vinyl monomers. In the photopolymerization of vinyl monomers using $Cp_2M/CCl_4$ (M = Fe, Co, Ni), the photopolymerization of MMA initiated by $Cp_2M/CCl_4$ (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe$ > $Cp_2Ni$ > $Cp_2Co$, the molecular weight decreases in the order $Cp_2Co$ > $Cp_2Ni$ > $Cp_2Fe$. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The photopolymerizations are not living. Many exciting possibilities remain to be examined and some of them are demonstrated in the body of the minireview.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.