• Title/Summary/Keyword: no tillage

Search Result 178, Processing Time 0.052 seconds

Changes of Soil Physico-Chemical Properties under Different Tillages of Paddy Soil (경운방법(耕耘方法)에 따른 논 토양(土壤)의 이화학성(理化學性) 변화(變化))

  • Yoo, Chul-Hyun;Shin, Bog-Woo;Jeong, Ji-Ho;Han, Sang-Soo;Kim, Seong-Jo;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 1997
  • The change of physico-chemical properties of paddy soil was monitored under different tillage. This study was conducted on Jeonbug silty cly loam, in Honam Agricultural Experiment Station, for four years starting from 1992. Different tillage involved (1)Continued no tillage, (2)Rotavation only with tractor every year, (3)Spring plowing with power tiller plus rotavation with tractor every year. The result of this study can be summarized as: Non tillage, when continued for some years, tended to increase 1)the hardness of soil, 2)the root density in the top soil, 3)the occurrence of annual and perennial weeds, and tended to lower the yield of rice compared to normal tillage(tilling with ow tiller in the spring plus rotavation by tractor before planting.

  • PDF

Application of BMP for Reduction of Runoff and NPS Pollutions (강우유출수와 비점오염물질을 저감하기 위한 최적관리기법의 적용)

  • Won, Chul-Hee;Shin, Min-Hwan;Shin, Hyun-Jun;Lim, Kyoung-Jay;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • The objective of this research was to experimentally test the effect of tillage methods on the reduction of runoff, non-point source (NPS) pollution load, sediment and discharge under a rainfall simulation. We used the runoff plots of $5m{\times}30m$ ($L{\times}W$) in size. Experimental treatments were conventional tillage (CT), CT-rice straw bundle (CT-RSB) and two no-till (NT) plots; slope of 3 % or 8 % ; and rainfall intensity of 30 mm/hr. The rainfall simulation was conducted to three times. The time to initial runoff from NT plots was less than that from CT plots regardless of the slope and it was delayed about 65~90 % compared to that of CT plot. And sediment discharge of 8 % slope reduced to 55 % compared to CT plot. But the sediment discharge was not occurred at 3 % slope. The NT and CT-RSB methods have a great possibility of reducing runoff and NPS pollution loads. Runoff rate of NT plots was significantly lower than those of CT plot. The average NPS pollution loads of the NT plots and CT-RSB plot reduced about 55~80 % and 2.1~40 % compared to those of the CT plots, respectively. It was also shown that runoff and NPS pollution loads reduction by NT method could be very significant and contribute to improve the water quality of streams in agricultural regions. It was concluded that the use of NT method on agricultural fields could reduce soil erosion and muddy runoff significantly and help improve the water quality and aquatic ecosystem.

Use of Drainage Water as Irrigation Resource in the Paddy Field to Mitigate Non-point Source Pollutants (배수로 물 관개 벼농사의 비점오염원 경감효과)

  • Kim, Choon-Song;Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-Yeol;Park, Sung-Tae;Ku, Yeon-Chung;Kang, Hang-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.107-115
    • /
    • 2007
  • Objective of this study was to assess the efficient rice cultivation practice to mitigate the non-point source pollutants loading to the adjacent watershed. Cultivation practices consisted of machine transplanting, direct seeding on dry paddy, and no tillage in which no fertilizer and pesticide were applied to paddy field. Water in drainage canal was used as irrigation source during the entire rice growing season. Loading of the non-point source pollutants to the adjacent small stream was mitigated by all treatments. Rice yield, total biomass (rice + weeds), and uptake T-N, $P_2O_5$, and $K_2O$ were higher in machine transplanting practice than those in direct seeding and no tillage practices. However, the purification effects of non-point source pollutants were followed in orders of no tillage > direct seeding > machine transplanting due to quantity of irrigation water. The annual purification quantity of T-N, T-P, and K by rice cultivations ranged from 46 to 369 kg $ha^{-1}$, 4.1 to 16.4 kg $ha^{-1}$, and 55 to 238 kg $ha^{-1}$, respectively, during the entire rice growing season. Results revealed that no tillage practice of rice cultivation was the best management option in reducing the loading of the non-point source pollutants from the drainage canal into stream.

Changes of Soil Properties and Temperature by Green Manure under Rice-based Cropping System

  • Jeon, Weon-Tai;Kim, Min-Tae;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Park, Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.413-416
    • /
    • 2008
  • The cultivation of green manure crop is considered as a good management practice by increasing soil organic matter and fertility levels. This experiment was conducted to improve the soil environment under rice-based cropping system at paddy soil (fine loamy, mixed, nonacid, mesic, family of Aeric Fluventic Haplaquepts) in National Institute of Crop Science (NICS), Korea in 2006 to 2007. The variation of soil temperature in green manure plots was lower than without green manure (control) during spring season (April to May). The temperature variation of no tillage plot (broadcast before rice harvest) was the lowest among treatments. After green manure cropping, the soil bulk density and porosity ratio were improved at the top soil. The production of green manure was the highest athairy vetch and barley mixture plot by partial tillage. However, mixture treatment had no improvement on soil organic matter. After rice cropping with green manure application, soil quality was improved such as soil physical properties except mixture treatment. Therefore, we suggest that soil quality should be improved by green manure cultivation under rice-based cropping system.

Changes of Soil Microbe communities in Plastic Film House by Green Manure Crops Cultivation

  • Won, J.G.;Jang, K.S.;Hwang, J.E.;Kwon, O.H.;Jeon, S.G.;Park, S.G.;Park, K.C.;Suh, Y.J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.149-152
    • /
    • 2011
  • To improve the soil condition for no-tillage organic pepper cultivation, four different green manure crops were cultivated. Fertilizer supply was depended on the biomass of the cultivated green manure crops, nitrogen supplies were 314kg in Vicia villosa and 341kg $ha^{-1}$ in Vicia angustifolia. In the microbial community analyzed by phospholipid fatty acid (PLFA) method, soil microbe populations were different among the green manure crops and fungi group was increased at Vicia angustifloia and Vicia villosa. The biological ratio indexes of fatty acids in the soils, the ratio of Gram-negative to Gram-positive bacterial PLFA and Ratio of aerobes to anaerobes were high at Vicia hirsute and Vicia tetrasperma suggesting the enrich of the aerobic conditions. The ratio of saturated to unsaturated fatty acids increased at Vicia angustifloia and Vicia villosa suggesting anaerobic conditions. Abundant biomass and uncomposted organic matter, the ratio of fungi to bacteria was increased at Vicia angustifloia and Vicia villosa.

Distribution of Weed Population in the Winter Wheat and Barley Field in Korea (전국(全國) 맥류재배포장(麥類栽培圃場)의 잡초발생분포(雜草發生分布) 조사(調査))

  • Ha, Y.W.;Nam, Y.I.;Park, M.E.;Cho, C.H.
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.120-128
    • /
    • 1983
  • The nationwide survey of weed population covering 1,800 wheat and barley fields in 60 Cities and Guns all around Korea was conducted in December of 1982 and March-April of 1983. In this survey result, two species of gresses and 35 species of broadleaves were identified, and among them 36 and 29 species were found in the wheat and barley fields of upland and paddy, respectively. In the scope of weed life cycle, biennials were more dominant than perennials and annuals in these fields. The most dominant weed species in upland fields were Stellaria media, Cyrillus and Alopecurus aequalis Sobol var. amurensis Ohwi while those in paddy fields were Stellaria alsine Grimm. var. undulata Ohwi and Alopecurus aequalis Sobol var. amurensis Ohwi. In addition, the more weeds were observed in the conventional row seeding method than in other seeding methods including drill seeding and also in no-tillage than in tillage method. In the other hand, the successive use of herbicide for several years greatly influenced the pattern of weed occurrence; broadleaved weeds increased and grasses decreased with the successive use of herbicides.

  • PDF

Redeveloped Work Criteria and Cost Unit in Grassland Establishment (초지조성방법에 따른 작업항목의 재설정 및 초지조성단가 추정)

  • Yoon, Byung Ku;Kim, Ji Yung;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • In this study, the appropriate unit cost in grassland establishment was redeveloped by the grassland establishment method and work criteria. The grassland establishment method was divided into tillage establishment (all logging) and no-tillage establishment (all logging and partial logging). The price for the work criteria by the establishment method was presented for each permission/authorization and establishment work. In permission/authorization for grassland establishment, the cost of each work criteria was of environmental impact (small scale environmental impact) assessment, disaster impact assessment, cadastral serving fee, forest survey, and connection fee for control of mountainous districts. In establishment was of logging, cleaning/gruffing, plowing/soil preparation, seeding, fertilization, livestock manure compost, seed, herbicide, labor cost (fertilizer, seed and herbicide), soil consolidation, cattle trail, and fence. The unit cost of grassland establishment was KRW 115,894,212 for the tillage establishment, and KRW 110,281,572 and KRW 106,680,122 for the all and partial logging of the no-tillage establishment, respectively. The current study redeveloped the establishment method, work criteria, and estimation of the unit cost of grassland establishment. It can be usefully used to carry out government projects to support related to establishment and maintenance of grassland.

Corn (Zea mays L.) Root Distribution in Response to Variation in Soil Water Content (토양 수분함량에 따른 옥수수 뿌리 분포의 변화)

  • Kim, Won-Il;Jung, Goo-Bok;Huck, M.G.;Kim, Yong-Woong;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Root distribution was monitored in the root zone of corn fields on several soil series in central Illinois during three growing seasons in order to find the effect of soil series and tillage system on root growth. A minirhizotron technique was used to videotape each soil profile in weekly intervals to a depth of 75 cm under conventional tillage (CT) and no tillage (NT) systems of cultivation. Root distribution near soil surface generally increased during the early stages of the growing season, but declined as surface soil moisture was depleted in late summer. Even though root distribution was not significantly different between soil series in this experiment. differences in root distribution between soil series were associated with the increases in root-available water storage capacity. Root population in the top 30 cm of NT plots. where increased water infiltration rates and saturated flow of soil moisture into the subsoil, was generally higher than that of CT plots in Illinois corn fields. Foots appeared in the deeper layers later in the growing season, with root penetration into subsoil layers occurring as much as 2-3 weeks earlier on the NT plots than in CT plots. In conclusion, root distribution was significantly affected by the tillage systems, but not different by soil series.

Effects of Green Manures and Complemental Fertilization on Growth and Nitrogen Use Efficiency of Chinese Cabbages Cultivated in Organic Systems (녹비작물과 추비방법이 유기재배 배추의 생육과 질소 이용효율에 미치는 영향)

  • Cho, Jung-Lai;An, Nan-Hee;Nam, Hong-Sik;Lee, Sang-Min
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.731-743
    • /
    • 2018
  • This study was conducted to evaluate the effects of green manures and complemental fertilization with oil cake or liquid fertilizer on growth and nitrogen use efficiency of Chinese cabbage cultivated in organi systems. Field experiments were carried out at the National Institute of Agricultural Science in Suwon, South Korea from 2012 to 2014. Two green manure crops, Crotalaria and Hairy vetch, was cultivated in summer and in winter, respectively. The application methods of the green manure consisted of three tillage systems (overall tillage, partial tillage and no tillage). Oil cake and liquid fertilizer were used as complemental fertilizer. The results showed that when used as covering material in the upland soil without tillage, green manure fertilization was more effective in increasing growth and yield of Chinese cabbage than when incorporated into soil. It was possible to grow and harvest Chinese cabbage in the spring season by the application of hairy vetch as winter green manure. The higher yield of Chinese cabbage with green manure application was caused by the lower incidence rate of soft rot and tip-burn. The yield of the Chines cabbage that received green manure applications over two consecutive seasons followed by the supplemental fertilization with oil cake was similar to that of the conventional chemical fertilization. Following a single season green manure application in summer, however, the yield of cabbage was only about 70% of the conventional treatment. Green manure cultivation with additional liquid fertilization produced a yield similar to the conventional fertilization treatment, soil inorganic nitrogen concentration remained stable and the nitrogen use efficiency increased in the green manure applied soil. In conclusion, the organic cultivation of Chinese cabbage in the autumn season could be outperformed in the upland soil receiving two seasons (winter and summer) of green manure fertilization followed by the supplemental fertilization with liquid fertilizer.