• Title/Summary/Keyword: nitrogen yield

Search Result 1,812, Processing Time 0.03 seconds

Mulberry Growth Promotion by Nitrogen Application under Abnormally Wet and Cool Weather Conditions (하추기 이상 저온하에서 뽕나무 발육부진요인과 추비에 의한 생육증진)

  • 이원주;윤명근
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.110-114
    • /
    • 1994
  • Abnormally cool and wet weather conditions during the summer of 1993 offered an opportunity to evaluate the effects of abnormal weather conditions on mulberry growth and to develop cultivation practicies to reduce leaf yield loss under the similar abnormal weather conditions. Different methods of nutrient supplementation were evaluated in Suwon and Kongju. Nitrogen was supplemented by foliar spray of urea(1.7%) or composite chemical fertilizer Jamsibiryo #8, or by the application of ammonium sulfate(60kg/ha) to the soil. During the period between the late June and the early September which corresponds to the mulberry growing season after summer pruning, mean temperature was 1.4$^{\circ}C$ lower and precipitation 83mm higher than normal year. This weather condition in 1993 caused reduction in leaf yield by 16.4% than common year. Soil nitrogen content decreased due to higher precipitation. Leaf yield loss was reduced by the supplementation of nitrogen to the soil. Leaf nitrogen content increased with the foliar urea spray and nitrogen supplementation to the soil.

  • PDF

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

Effects of NitrogenLeVel and Plant Populationon agronomic Chracterisitics and yield I silage Corn (질소시비와 제식밀도가 Silage 옥수수의 제형질 및 수량에 미치는 영향)

  • 강정훈;이호진;박병훈
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.1
    • /
    • pp.44-48
    • /
    • 1986
  • This field experiment was conducted to determine the optimum nitrogen level and plant population for silage and grain corn cv. Suweon No. 19 at Suweon from 1981 to 1982. The results obtained are summarized as follows: 1. Leaf Area Index (LAI), Loding Index (LI) and stalk diameter were increased by raising nitrogen level but ear height was decreased. And tasseling date and stalk height were not influenced by nitrogen level. 2. LAI, LI and ear height were increased by raising plant population but tasseling date, stalk height and stalk diameter were decreased. 3. Numbers of missing hill and barren plants were increased by raising nitrogen and dense plant population respectively. Grain yield and total digestible dry matter yield in 5,550 plants with 10kg of nitrogen fertilization per 10a were recommendable for grain and silage corn respectively.

  • PDF

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

The Effect of Nitrogen Rates on The Growth and Yield of Maize in Agricultural Fields with the Stream (하천변 농경지에서 질소 시비량 차이가 옥수수 생육 및 수량에 미치는 영향)

  • Lim, Jung Taek;Chang, Jae-Hyuk;Rho, Ye-Jin;Ryu, Jin-Hee;Chung, Dong Young;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • This study was conducted to investigate the effect of nitrogen rates on the growth characteristics and yield of maize in agricultural fields with the stream. This indicates the necessity and optimal level of nitrous fertilization to examine the possibilities of quantity enhancement. Plant height and ear height of maize were not significantly different among the nitrogen rates. Stem diameter and leaf area index increased in the nitrogen treatment compared to untreated control. Changes of photosynthetic rate in maize leaves depending on nitrogen treatments increased as much as nitrogen rates were increased up to the highest level, 36 kg per 10a. NDF and ADF content levels of maize were investigated with different nitrogen rates regardless of treatments. In the case of NDF, it showed a tendency to decrease after 8 days of tasseling date. ADF had also decreased after 15 days of tasseling date. Nitrogen uptake of maize leaves with different nitrogen rates showed the highest level, $4.9g\;kg^{-1}$ with 36 kg per 10a on the tasseling date. Ear length and 100-kernel weight, there were no significant differences according to yield and the components with different nitrogen rates. Ear diameter and kernel number, nitrogen rates of 18 kg and 36 kg were increased compared to nitrogen rate of 9 kg per 10a and untreated control. The pericarps in 9 kg nitrogen rate and control were thicker than those of 18 kg and 36 kg treatment. The yield, 18 kg, 36 kg, and 9 kg treatments were increased by 10.96%, 9.27%, and 3.31%, compared to control. The component analysis on maize kernel with different nitrogen rates, starch showed no significant differences among treatments. Total sugar in 18 kg nitrogen treatment represented the highest content level, 6.37%. In addition, Amylopectin in 18 kg treatment showed the highest content level of 90.38%. However, amylose in 18 kg treatment showed the lowest level, 9.62% which drew a conclusion that waxy of 18 kg treatment is considered to be the strongest one. From the results described above, nitrous fertilization is essential to grow maize in agricultural fields with the stream. The optimum level of nitrous fertilization is considered 18 kg per 10a.

Nitrogen Efficiency and its Relation to Various Physiological Characteristics among Rice Varieties (수도품종간(水稻品種間) 질소효율(窒素効率) 및 수종(數種) 생리적특성(生理的特性)과의 관계(關係))

  • Park, Hoon;Mok, Sung Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 1975
  • Nitrogen efficiency for grain yield(E) and its relation to grain yield(Y), harvesting index(HI), percent translocation of nitrogen from straw to grain(T), nitrogen uptake amount(N), concentration in grain (GN%) or straw (SN%) and total dry matter yield (TY) among rice varieties (Oryza sativa, old and new varieties) were investigated at four nitrogen nutritional status (high and low fertilizer levels in high and low fertility fields) by simple correlation analysis. Relation between any two of above parameters or total dry matter yield (TY) and nitrogen efficiency for total dry matter yield (TE) was also investigated. 1. E is significantly and positively correlated with T, Y, HI but negatively with SN%, N, GN% and in negative trend with TY. 2. T is significantly and positively with GN% or Y, but negatively with SN%. 3. TE is significantly and positively correlated with TY but negatively with N. 4. The order of E among varieties showed consistency among different nitrogen nutritional environments. 5. From the above facts it was concluded that high yielding varieties have high nitrogen efficiency due to high percent translocation of nitrogen from straw to grain, subsequent low nitrogen concentration in straw and that translocated nitrogen in grain is greatly diluted with photosynthates. 6. Reported physiological characteristics of newly bred high yielding IR lines are well accordance with their high nitrogen efficiency and rice breeding was a selection on the basis of nitrogen efficiency. 7. It is postulated that high nitrogen efficiency varieties for yields have high nitrogen efficiency for root growth in early stage so that uptake more efficient soil nitrogen in later growth stage.

  • PDF

Studies on the Productivity of Individual Leaf Blade of Paddy Rice (수도의엽신별 생육효과에 관한 연구)

  • Dong-Sam Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.1-27
    • /
    • 1975
  • Experiment I: A field experiment was conducted in an attempt to find the effect of top-dressing at heading time in different levels of nitrogen application and of different positioned leaf blades formed by the treatment of leaf defoliation at heading time on the ripening and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill and average number of grains per ear in different levels of nitrogen application were increased as the amount of nitrogen applied was increased. while the rate of ripened grains the yield of rough rice and the weight of 1, 000 kernels of brown rice were decreased respectively as the amount of nitrogen applied was increased. 2. The rate of ripened grains and the weight of 1.000 kernels of brown rice in different levels of nitrogen, top-dressing at heading time were larger than those in control and increased. The yield of rough rice although statistically significant differences were not recognized, were numerically increased. 3. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf-defoliation became larger. 4. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different combinations of number of remained leaves positioned differently, formed the order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf blade was remained, and were increased as the positions of leaves were higher when two leaf blades. were, remained. 5. In case of decrease in the number of leaf blades positioned differently, by the treatment of leaf. defoliation, rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling were increased as the area of remained leaves became larger and the nitrogen content of a leaf blade was increased. 6. There was a tendency that the increase in the amount of fertilizer application made the rate of ripened grains and the weight of 1, 000 kernels of brown rice reduced in any number of remained leaf blades, but the application of top-dressing at heading. time resulted in the reverse tendency. The yield of rough rice showed a tendency to be increased as the amount of basal dressing and top-dressing increased and for the application of top-dressing at heading time, the yield of rough rice was less at the smaller number of those. 7. The productivity effect of the rate of ripened grains and the yield of brown rice covered by leaf blades was more than 50 per cent and that of the. weight of 1, 000 kernels of brown rice was not more than 1.0 percent. As the amount of nitrogen application increased the. effect of leaf blades on the rate of ripened. grains and the weight of 1, 000 kernels of brown rice was increased. The effect of leaf blades on the weight of brown rice was increased as the amount of basal dressing-application, but the effect was decreased as the amount of top-dressing at heading time increased, 8. The productivity effects of different positioned leaf blades on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice were in order of $L_1(flag leaf)>L_2>L_3>L_4$ the productivity effects of $L_1$ and $L_2$ had a tendency to be increased as the amount of nitrogen applied was increased. Experiment II: A field experiment was done in order to disclose the effect of the time of nitrogen application on yield component and the effect of different positioned leaves formed by leaf defoliation at heading time on the rate of ripened grains and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill was increased in the treatment of nitrogen application from basal dressing to 22 days before heading and in the treatment of application distributed weekly. Number of grains was increased in the treatment of nitrogen application from 36 days to 15 days before heading. The rate of ripened grains was, lower in the treatment of nitrogen application from top-dressing to 15 days before heading than in that of non-application, was higher in the treatment of nitrogen application within 8 days before heading, and was the lowest in that of application 29 days before heading. The yield of rough rice was the highest in the treatment of nitrogen application from 29 days to 22 days before heading. The weight of 1, 000 kernels of brown rice was a little high in the treatment of application from 29 days to 8 days before heading. 2. The rate of ripened grains the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf defoliation got larger and there were highly significant differences among treatments. There was also a recognized interaction between the time of nitrogen application and leaf defoliation. 3. In relation to the rate of ripened grains, the weight of 1. 000 kernels of brown rice and the rate of hulling in different numbers of remained leaves positioned differently and their combinations, the yield components were in order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf was remained, which indicated that the components were increased as the leaf position got higher. When two laves were remained, the rate of ripened grains, the yield of rough rice and rate of hulling were high in case of the combinations of upper positioned leaves, and the increase in the weight of 1, 000 kernels of brown rice appeared to be affected most]y by flag leaf. When three leaf blades were remained similarly the components were increased with the combination of upper positioned leaf blades. 4. In case of decreased different positioned leaf blades by treatment of leaf defoliation, there was a significant positive regression between the leaf area, the dry matter weight of leaf blades and the nitrogen contents of leaf blades, and rate of ripened grains and the yield of rough rice, but there was no constant tendency between the former components and the weight of 1. 000 kernels of brown rice. 5. The closer the time of fertilizer application to heading time, the more the rate of ripened grains and the weight of 1, 000 kernels was decreased by defoliation, and the less were the remained leaf blades, the more remarkable was the tendency. The rate of ripened grains and the weight of 1. 000 kernels was increased by the top-dressing after heading time as the number of remained leaf blades. When the number of remained leaf blades was small the yield of rough rice was increased as the time of fertilizer application was closer to heading time. 6. Discussing the productivity effects of different organs in different times of nitrogen application, the productivity effect of a leaf blade on the rate of ripened grains was higher as the time of nitrogen application got later, and in the treatment of non-fertilization the productivity effect of a leaf blade and that of culm were the same. In the productivity effect on the yield of brown rice, the effect of culm covered more than 50 percent independently on the time of nitrogen application, and the tendency was larger in the treatment of non-fertilizer. The productivity effect of culm on the weight of 1. 000 kernels of brown rice was more than 90 percent, and the productivity effect of a leaf blade was increased as the time of application got later. 7. The productivity effect of a leaf blade in different positions on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice had a tendency to be increased as the time of application got later and as the position of leaf blades got higher. In the treatment of weekly application through the entire growing period, the rate of ripened grains and the yield of rough rice were affected by flag leaf and the second leaf at the same level, the but the weight of 1, 000 kernels of brown rice was affected by flag leaf with more than 60 percent of the yield of total leaves.

  • PDF

Effect of Plant Spacing on the Competitive Ability of Rice Growing in Association with Various Weed Communities at Different Nitrogen Levels (잡초군락형별로 본 질소시비량과 재식밀도가 수도의 경합력에 미치는 영향)

  • S. C, Kim;Keith, Moody
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.17-27
    • /
    • 1980
  • All types of weed community became dominant by Monochoria vaginalis (Burm.) Presl. as the nitrogen level increased. The importance value (IV.) of M vaginalis rapidly increased with increasing nitrogen level whereas the LV. of other weed species decreased. At the 10 $\times$ 10cm plant spacing, M. vaginalis was almost totally suppressed at all nitrogen levels. At the 20 $\times$ 20cm plant spacing, the degree of suppression declined with increasing nitrogen level. At the 30 $\times$ 30cm plant spacing, there was no suppression of M vaginalis at the highest nitrogen level. The yield obtained at the 10 $\times$ 10cm plant spacing when M. vaginalis was present was not significantly different from that obtained from the weed free plot for all rice cultivars while it was significantly reduced by M vaginalis competition at the 20 $\times$ 20cm and 30 $\times$ 30cm plant spacings. The difference in yield caused by M vaginalis competition was primarily due to a reduction in the number of panicles at all nitrogen levels. There was a high negative correlation between grain yield and weed weight at heading. The yield reduction due to weed competition varied depending upon the nitrogen level.

  • PDF

Study on Determine the Amount of Nitrogen to be Applied at Tillering and Reproductive Stages of Rice (수도(水稻)에 대(對)한 분얼비(分蘖肥)와 수비량(穗肥量) 결정(結定)에 관(關)한 연구)

  • Oh, Wang Keon;Park, Jun Kyu;Kim, Ung Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.2
    • /
    • pp.155-159
    • /
    • 1971
  • 1. Based upon an fertilizer experiment done in a farmer's field, with a medium maturity variety, Jinheung, (in 1969) a method of determination of nitrogen to be additionally given, at tillering and reproductive stages was studied. In this experiment, four kilograms of nitrogen per 0.1 ha was applied as basal dressing to all experimental treatments at transplanting time. 2. The application of nitrogen at the reproductive stage of paddy increased the yield remarkably and cut down the amount of nitrogen to be given at the tillering stage. The yield of paddy, 670kg/0.1 ha obtained by the application of 6.82kg N/0.1 ha at the reproductive stage far exceeded the yield, 644kg/0.1ha obtained when over 8kg N/0.1ha of N is applied at tillering stage alone. This emphasizes the importance of nitrogen top dressing at the reproductive stage. 3. As the amount of nitrogen to be given at both stages, reproductive and tillering, would be the reflection of soil fertility of the field, a correlative study between the amount of nitrogen to be given at both stages and soil analysis is suggested to be undertaken. 4. A study on the relationship between the amount of fertilizer to be given at stages different growth and yield components is suggested to be undertaken for the purpose of establishing a better fertilizer use technique.

  • PDF

Various Nitrogen Efficiencies and their Interrelation Among Rice Varieties (수도품종간(水稻品種間) 여러 질소효율(窒素効率)의 상호관계(相互關係))

  • Park, Hoon;Mok, Sung Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.2
    • /
    • pp.83-92
    • /
    • 1976
  • The relationships between various nitrogen efficiencies among 57 rice cultivars grouped into three developmental categories were investigated by simple correlation with (12kg/10a) and without nitrogen fertilizer under the field condition. The relationship showed similar in a group or among all varieties of three groups. Yield among varieties showed highly significant correlation with Fe (fertilization efficiency: yield increment/nitrogen applied), E (nitrogen efficiency for yield), Ef(efficiency of nitrogen derived from fertilizer) and Eu (fertilizer use efficiency: nitrogen derived from fertilizer divided by total nitrogen applied). The E was correlated significantly and positively with harvest index (HI), percent translocation (T) of nitrogen to ear and negatively with nitrogen uptake amount (N), nitrogen concentration in grain (GN%) and in straw (SN%). The E depends almost on Ef and only inTongil group partly on Es (efficiency of nitrogen derived from soil). The Ef contributes to Fe more than Eu does (Fe = $Ef{\cdot}Eu$). It appears that Ef and Eu increased from the old group to the recommended local varieties, but only EF and Es increased markedly when rice was developed from recommended local group to Tongil line ($indica{\times}japonica$ hybrid selction). The fact that E and Fe depend more on Ef among rice varieties is very good contrast to the result that E and Fe depend more on Es and Eu respectively among soils in the previous investigatigation. The Ef appears as the most important parameter for rice varietal selection under fertilizer application system.

  • PDF