• Title/Summary/Keyword: nitrogen use efficiency

Search Result 300, Processing Time 0.028 seconds

Comparison of Water, Nitrogen Uptake and Use Efficiency Treated with Silica and N Application Forms (규산과 질소형태별 처리에 따른 벼의 수분 및 질소흡수와 이용효율 비교)

  • Choi, Kyung-Jin;Lee, Jung-Il;Chung, Nam-Jin;Yang, Won-Ha;Lee, Chung-Keun;Oh, Se-Kwan;Kim, Je-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • This experiment was carried out to elucidate the effects of silicate and different application forms of N on the uptake of water and N by rice plants. Three rice cultivars, Ilpum, Anda and M202, were grown under the hydroponics in a phytotron. One-hundred ppm silica was applied for silicate treatment. For nitrogen application forms were 100% $NH_4$ and $NH_4+NO_3$ in 2:1 ratio were applied. Silica treatment, compared to silica free, was very effective on the nitrogen uptake and dry weight increase of rice plants. Although silica application demonstrated no significant effect on the amount of water uptake, it improved increased water and nitrogen use efficiency. Therefore, sufficient application of silicate in paddy field will be useful for the growth of rice plants and water saving.

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient use Efficiency in Cabbage (토양검정에 의한 유기자원 시비처방이 양배추의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • BACKGROUND: In this study, in order to verify the effects of supplemented organic amendment fertilizers recommended by the soil testing on cabbages, we used various amounts of organic amendment fertilizers. The amount of organic amendment fertilizers was decided by calculating each ratio of inorganic nitrogen, phosphorus, and potassium based on the recommended fertilizer composition. METHODS AND RESULTS: The cabbages subjected to treatments 1 and 2 showed similar or greater leaf colors (SPAD values), head heights, head widths, head weight, soil organic matter content, nitrate-nitrogen level, and conductivity after harvest, when compared with cabbages treated with chemical fertilizers. The phosphorus and potassium fixation in the soil were higher in the plot where cabbages were treated with chemical fertilizers, and the nutrient use efficiency was greater in the plots with organic amendments and mineral addition. CONCLUSION: The treatments 1 and 2 that were supplemented with 180-200% of nitrogen, 100-130% of phosphorus, and 185-250% of potassium in comparison to chemical fertilizers, applied by the inorganic ratios of nitrogen, phosphorus, and potassium can be used as organic amendment fertilizers for cabbages.

Evaluation of Agrotain Efficiency for Suppression of Ammonium Volatilization Under Chinese Cabbage Cultivation Fields

  • Im, Jong-Uk;Jeon, Seong-Hwa;Oh, Young-a;Lim, Hwan-Kyu;Lee, Yong Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Chinese cabbage cultivation and ammonia volatilization experiments were done to evaluate the efficiency of Agrotain coated urea (GSP 80% + Agro; GSP 100% + Agro) against conventional urea (GSP 80%; GSP 100%). Fresh weight of Chinese cabbage were 17.2% and 7.3% higher in the treatments that received GSP 80% + Agro and GSP 100% + Agro, respectively, of those from the treatments that received urea alone. Likewise, the nitrogen use efficiency of Chinese cabbage in the treatments that received Agrotain coated urea were significantly higher at the rate of 3.5% (GSP 80% + Agro) and 1.9% (GSP 100% + Agro) compared to urea alone treatments. Ammonia emission was substantially higher at the rate of $107.6N\;mg\;chamber^{-1}$ with the application of only GSP 100%. However, nearly 28.3% of ammonia emission was considerably reduced with the use of Agrotain coated urea. Hence, we recommend the use of Agrotain coated urea in conventional farming for increased crop yield as well as simultaneous reduction of nitrogenous fertilizer use.

Potential use of Flemingia (Flemingia macrophylla) as a protein source fodder to improve nutrients digestibility, ruminal fermentation efficiency in beef cattle

  • Phesatcha, Burarat;Viennasay, Bounnaxay;Wanapat, Metha
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.613-620
    • /
    • 2021
  • Objective: This study aimed at studying the potential use of Flemingia (Flemingia macrophylla) as a protein source fodder to improve nutrients digestibility and ruminal fermentation efficiency in beef cattle. Methods: Four, Thai native beef cattle were randomly assigned in a 4×4 Latin square design. Four levels of Flemingia hay meal (FHM) were used to replace soybean meal (SBM) in the concentrate mixtures in four dietary treatments replacing levels at 0%, 30%, 60%, and 100% of SBM. Results: The experimental findings revealed that replacements did not effect on intake of rice straw, concentrate and total dry matter (DM) intake (p>0.05). However, the apparent digestibilities of DM, organic matter, crude protein, acid detergent fiber, and neutral detergent fiber were linearly increased up to 100% replacement levels. Moreover, the production of total volatile fatty acids, and propionate concentration were enhanced (p<0.05) whereas the concentration of acetate was reduced in all replacement groups. Consequently, the CH4 production was significantly lower when increasing levels of FHM for SBM (p<0.05). Furthermore, rumen bacterial population was additionally increased (p<0.05) while protozoal population was clearly decreased (p<0.05) in all replacement groups up to 100%. In addition, microbial nitrogen supply and efficiency of microbial nitrogen synthesis were enhanced (p<0.05), as affected by FHM replacements. Conclusion: The findings under this experiment suggest that 100% FHM replacement in concentrate mixture enhanced rumen fermentation efficiency, nutrients digestibilities, bacterial population, microbial protein synthesis, and subsequently reduced CH4 production in beef cattle fed on rice straw.

A Study on the Formation and Reduction of NOx in 5TPD SRF Boiler (5톤/일 규모 SRF 전용 연소보일러에서의 질소산화물의 생성과 저감에 대한 연구)

  • Yoon, Young-Sik;Park, Dong-Kyu;Gu, Jae-Hoi;Park, Yeong-Su;Seo, Yong-Chil
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.647-652
    • /
    • 2018
  • The emission of nitrogen oxides has a great environmental impact. It leads to Los Angeles type smog, and it recently has attracted attention as a source of ultrafine dust. The main sources of nitrogen oxides are internal combustion engines and industrial boilers. These emission sources are processes that are essential for human industrial activities, so the regulation of original use is impossible. Therefore, special control methods should be applied to reduce NOx emissions into the atmosphere. In this study, we investigated how the supply of ER and urea influences the removal of nitrogen oxides from SRF combustion boilers. Experimental results show that the removal efficiency of nitrogen oxides can be up to 80% under the conditions of ER 2.0 and a urea feed of 0.5 LPM.

Eco-efficiency Analysis of Organic Agriculture in Korea

  • Kim, Chang-Gil;Jeong, Hak-Kyun
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.87-91
    • /
    • 2011
  • Eco-efficiency which is calculated by dividing economic productivity by the environmental load was made by synthesizing eco and efficiency from ecology and economy, proposed by World Business Council for Sustainable Development in 2000. Eco-efficiency by connection of resource efficiency with resource intensity is used as an indicator for evaluating green growth for minimizing the impact on the environment and achieving economic development as well by means of efficient use of resources. This research analyzes eco-efficiency with the case of organic agriculture promoted as a key green growth policy. Thirty questionnaires for farmers producing organic rice in Hongseong-gun, Choongcheongnam-do were used for the analysis. Eco-efficiency was measured by means of the amount of used nitrogen with respect to the amount of income, and was represented that organic agriculture was 32.0 higher than conventional agriculture. The analytical result of technical efficiency, using the (Data Envelopment Analysis (DEA) model showed that it is 0.765 which has a possibility of 21% in management improvement, and higher eco-efficiency was with higher technical efficiency. The analytical results showed that an organic agriculture contributes to green growth more than conventional agriculture. In addition, higher technical efficiency groups exhibited higher eco-efficiency indices.

Effects of Water Deficit on Biomass Accumulation and Water Use Efficiency in Soybean during Vegetative Growth Period

  • Kim, Wook-Han;Hong, Byung-Hee;Larry C. Purcell
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.6-13
    • /
    • 2000
  • Water deficit is the primary constraint of soybean [Glycine max (L.) Merr.] yield, and a physiological understanding of processes affected by water deficit is a key step in identifying and improving drought tolerance in soybean. The objectives of this research were to evaluate biomass and nitrogen accumulation patterns and water use efficiency (WUE) as possible mechanisms associated with the drought tolerance of Jackson. Biomass accumulation of Jackson was contrasted with the PI416937, which also has demonstrated tolerance to drought. For water-deficit treatment, total biomass accumulation was negligible for PI416937, but biomass accumulation continued at approximately 64 % of the well-watered treatment of Jackson. Transpirational losses for Jackson and PI416937 were approximately the same for the water-deficit treatment, indicating that Jackson had superior WUE. Isotopic discrimination of $^{13}$ C relative to $^{12}$ C also indicated that Jackson had higher WUE. Results indicated that increased WUE for Jackson under water deficit showed it was tolerant to drought rather than had an avoidance mechanism.

  • PDF

Grain Yield and Nitrogen Use Efficiency due to Long-Term Fertilization in Paddy Rice (동일비료(同一肥料) 장기운용(長期連用)에 따른 벼의 수량과 질소이용효율(窒素利用效率))

  • Yun, Eul-Soo;Choe, Zhin-Ryong;Jung, Yeun-Tae;Park, Kyeong-Bae;Lee, Jae-Saeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.109-114
    • /
    • 1999
  • This study was carried out to obtain some information on the sustainability of paddy rice through the long-term variation of nitrogen use efficiency. The experiment was conducted during 30-year with the same amount of N, P, K and compost at Milyang, southern part of Korea. The results were as follows. Grain yield was increased significantly in the plots of compost incorporation only. However, yield productivity was decreased slightly in the plots with nil and unbalanced fertilization. The effects of rice straw compost on grain yield was not clear at the early crop years but was shown slightly at the late period of the experimental. The grain yield in the plots of compost incorporation at 30th crop year was come to about 80% of NPK plots. The amount of nitrogen uptaken by rice plant was the highest as $167kg\;ha^{-1}$ in NPK plus compost incorporation. Recovery efficiency)($RE_N$) was higher as 0.48~0.74 in compost incorporation plots than in other plots of balanced and unbalanced application. Average agronomic efficiency($AE-N$) and partial factor productivity from N fertilizer applied($PFP_N$) during 30 crop years in NPK plots was 12.8 kg/kg N and 37.7 kg/kg N, respectively, and difference of $AE-N$ and $PFP_N$ shown as indigenous soil nitrogen supply(INS) was higher as 28.4 kg/kg N in NPK + compost plot than NPK plot and was widened at the late period of experiment.

  • PDF

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Effect of Water Management after Fertilizer Application on Fate and Efficiency of Applied Nitrogen (시식 후 물관리 방법이 실소의 동태 및 이용효율에 미치는 영향)

  • 이변우;명을재;최관호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The fate and use efficiency of applied nitrogen were evaluated in a pot experiment with different fertilizers and water management practices during 30days after fertilizer application. N-P-K compound fertilizers, 13-10-1l(F-l) for upland Crop use and 15-10-10(F-3) for rice Crop use, and mixed fertilizer, 21-17-17(F-2) for basal dressing in rice were used. Fertilizers corresponding to 1.8g N were mixed thoroughly with the whole volume of sandy loam soil in a pot. The pots were flooded upto 3cm above soil surface for O(0dF), 10(10dF), 20(20dF), and 30(30dF) days after fertilizer application and all the treatments were flooded continuously from 30 days after fertilizer application. During the flooding period water percolation rate was adjusted to 2.5mm/day. Rice seedlings were transplanted 40 days after fertilizer application. The pH of infiltrated water increased with increasing duration of flooding. The pH of F-2 was higher than those of F-1 and F-3 between which there were no differences. The applied nitrogen remained 23% in F-1, 29% in F-2, and 29.1 % in F-3, and 45.0% in 0dF, 26.6% in 10dF, 24.8% in 20dF, and 20.3% in 30dF as inorganic nitrogen at 63 days after fertilizer application. Nitrogen losses by leaching amounted to 51.3%, 32.1% and 48.1% of applied nitrogen in F-1, F-2 and F-3, respectively. Nitrogen leaching losses increased with increasing duration of flood- ing, amounting to 25.7%, 29.8%, 32.7%, and 35.8% in 0dF, 10dF, 20dF and 30dF, respectively. Gaseous loss of applied nitrogen was greatest in F-2, followed by F-1 and F-3. Total loss of nitrogen due to gaseous volatilization and leaching was greatest in F -1, followed by F -2 and F-3, and were greater in the treatments with longer flooding after fertilizer application. Nitrogen recovery by rice shoot until 72 days after transplanting were 23.2%, 24.7% and 27.4% of applied nitrogen in F-1, F-2 and F-3, respectively and 34.1%, 25.5%, 21.1%, and 21.2% in 0dF, 10dF, 20dF and 30dF, respectively.

  • PDF