DOI QR코드

DOI QR Code

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature

CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응

  • Hyeonsoo Jang (National Institute of Crop Science, Rural Development Administration) ;
  • Wan-Gyu Sang (National Institute of Crop Science, Rural Development Administration) ;
  • Youn-Ho Lee (National Institute of Crop Science, Rural Development Administration) ;
  • Pyeong Shin (National Institute of Crop Science, Rural Development Administration) ;
  • Jin-hee Ryu (National Institute of Crop Science, Rural Development Administration) ;
  • Hee-woo Lee (National Institute of Crop Science, Rural Development Administration) ;
  • Dae-wook Kim (National Institute of Crop Science, Rural Development Administration) ;
  • Jong-tag Youn (National Institute of Crop Science, Rural Development Administration) ;
  • Ji-Won Han (National Agrobiodiversity Center, National Institute of Agriculture Science, Rural Development Administration)
  • 장현수 (국립식량과학원 작물재배생리과) ;
  • 상완규 (국립식량과학원 작물재배생리과) ;
  • 이윤호 (국립식량과학원 작물재배생리과) ;
  • 신평 (국립식량과학원 작물재배생리과) ;
  • 류진희 (국립식량과학원 작물재배생리과) ;
  • 이희우 (국립식량과학원 작물재배생리과) ;
  • 김대욱 (국립식량과학원 작물재배생리과) ;
  • 윤종탁 (국립식량과학원 작물재배생리과) ;
  • 한지원 (국립농업과학원 농업유전자원센터)
  • Received : 2023.11.06
  • Accepted : 2023.12.08
  • Published : 2023.12.30

Abstract

Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

기후변화가 심화됨에 따라 작물에 미치는 영향을 평가하고 개선 방안을 도출하는 것은 필수적이다. 본 연구에서는 고온, 고이산화탄소 조건에서 벼의 질소 흡수 반응 및 질소이용효율 등을 분석하여 기후변화에 따른 벼의 적응 대책을 검토하고자 수행하였다. 21C 후반 RCP8.5 시나리오에 근거하여 온도는 2001~2010년 대비 +4.7 ℃ 상승, CO2는 800 ppm을 기후변화 조건으로 하였으며, 질소를 0, 9, 18 kg 10a-1 수준으로 각각 시비하였다. 그리고 벼 낱알의 질소 흡수를 보기 위해 수비 시비시 안정동위원소15N-urea를 표층 시비하였다. 기후변화 조건에서는 현재 기후 대비 잎, 줄기의 바이오매스량은 증가하나 등숙률 감소로 정조중이 38 % 감소하여 수확지수도 47% 감소하였다. 기후변화로 인해 잎과 줄기에서 질소흡수량은 현재기후 대비 각각 87%, 139% 증가하였으며, 반대로 곡실의 질소함량은 31% 감소하는 경향을 보였다. 기후변화 조건에서 ANUE, NUEg는 표준시비 시 각각 76%, 54% 유의하게 감소하였으며, 수비 질소의 흡수량과 회수율(RE)도 이와 동일한 경향을 보였으며 질소시비를 증가하였을 경우에도 동일한 경향을 보였다. 임실 및 등숙률 저하로 sink/source 균형이 무너져 질소 화합물 및 광합성 산물의 이동이 저하되어 질소함량이 영양생장기관에 머물러있고 곡실로의 전류가 되지 않으므로 향후 이를 극복할 수 있는 고온 적응 품종 육성과 이앙시기 조절 등이 선행되어야 한다.

Keywords

Acknowledgement

This paper is the result of a study conducted as part of the Rural Development Administration's research project 'Evaluation of nitrogen and photosynthetic metabolism in rice under high temperature and high carbon dioxide environment (No. PJ015945012023)' We would like to thank you for this.

References

  1. Allen, L. H., K. J. Boote, J. W. Jones, P. H. Jones, N. B. Pickering, J. T. Baker, J. C. V. Vu, R. W. Gesch, J. M. G. Thomas, and P. V. V. Prasad, 2020: Sunlit, controlled-environment chambers are essential for comparing plant responses to various climates. Agronomy Journal 112(6), 4531-4549. https://doi.org/10.1002/agj2.20428
  2. Cassman, K. G., S. Peng, D. C. Oleck, J. K. Ladha, W. Reichhardt, A. Dobermann, and U. Singh, 1998: Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Research 56, 7-19. https://doi.org/10.1016/S0378-4290(97)00140-8
  3. Craswell, T., and D. C. Godwin, 1984: The efficiency of N fertilizers applied to cereals in different climates. In Advances in plant nutrition. Advances in Plant nutrition, 1-55.
  4. Kim, D., J. Kim, and Y. Byeon, 2022: South Korea Detailed Climate Change Outlook Report. National Institute of Meteorological Science. 24pp. (in Korean)
  5. Kim, H. 1998: Effects of elevated CO2 and temperature on nitrogen responses in rice. Korean Journal of Plant Resources 11(2), 119-123. (in Korean with English abstract)
  6. Kim, H., M. Lieffering, K. Kobayashi, M. Okada, M. W. Mitchell, and M. Gumpertz, 2003: Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research 83, 261-270. https://doi.org/10.1016/S0378-4290(03)00076-5
  7. Kim, H., S. Kim, J. Kwak, D. Lee, S. Lee, H. Ro, and W. Choi, 2011: Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant Soil 342, 59-71. https://doi.org/10.1007/s11104-010-0665-y
  8. KMA. http://www.climate.go.kr/home/CCS/contents_2021/influence/inf_2-1.php (2023.10.29)
  9. KMA. http://www.climate.go.kr/home/CCS/contents_2021/32_2_user_analysis.php (2023. 10.29)
  10. Kwon, W. 2005: Current status and perspectives of climate change sciences. Korean Meteorological Society 41(2-1), 325-336. (in Korean with English abstract)
  11. Lal, Milan K., N. Sharma, S. B. Adavi, E. sharma, M. A. Altaf, R. K. Tiwari, R. Kumar, A. Dey, V. Paul, B. Singh, and M. P. Singh, 2022: From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO2]. Plant Molecular Biology 110(4-5), 305-324. https://doi.org/10.1007/s11103-022-01274-9
  12. Lee, C., J. Kim, J. Shon, W. Yang, Y. Yoon, K. Choi, and K. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.4.207
  13. Lee, G., D. Nguyen, D. Choi, Ho, Ban, and B. Lee, 2015: Effects of elevated air temperature on yield and yield components of rice. Korean Journal of Agricultural and Forest Meteorology 17(2), 156-164. https://doi.org/10.5532/KJAFM.2015.17.2.156
  14. Lee, S. and S. Ryu, 1994: A study on the behavior of surface-applied urea with 15N isotope dilution technique in paddy soil. Agricultural chemistry and Biotechnology 37(4), 277-286. (in Korean with English abstract)
  15. Lenka, N. K., S. Lenka, P. Mahapatra, N. Sharma, S. Kumar, S. B. Aher, and D. S. Yashona, 2019: The fate 15N labeled urea in a soybean- wheat cropping sequence under elevated CO2 and/or temperature. Agriculture, Ecosystems and Environment 282, 23-29. https://doi.org/10.1016/j.agee.2019.04.033
  16. Mahajan, G., N. K. Sekhon, N. Singh, R. Kaur, and A. S. Sidhu, 2010: Yield and nitrogen-use efficiency of aromatic rice cultivars in response to nitrogen fertilizer. Journal of New Seeds 11(4), 356-368. https://doi.org/10.1080/1522886X.2010.520145
  17. Nam, H., J. Kawk, S. Lim, W. Choi, S. Lee, D. Lee, K. Lee, H. Kim, S. Lee, and M. Matsushima, 2013: Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO2. Plant Soil 369, 563-575. https://doi.org/10.1007/s11104-013-1598-z
  18. Pendall. E., S. Bridgham. P. J. Hanson, B. Hungate, D. W. Kicklighter, D. W. Johnson, B. E. Law, Y. Luo, J. P. Megonigal, M. Olsrud, M G. Ryan, and S. Wan, 2004: Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist 162(2), 311-322. https://doi.org/10.1111/j.1469-8137.2004.01053.x
  19. Sang, W., H. Cho, P. J. Kim, P. Shin, J. Baek, Y. Lee, J. Cho and M. Seo, 2018: The change of grain quality and starch assimilation of rice under future climate conditions according to RCP8.5 scenario. Korean Journal of agricultural and Forest Meteorology 20(4), 296-304. (in Korean with English abstract)
  20. Sang, W., J. Kim, P. Shin, J. Baek, and M. Seo, 2020: Processing and quality control of big data from Korean SPAR (Soil-Plant-Atmosphere-Research) System. Korean Journal of Agricultural and Forest Meteorology 22(4), 340-345. (in Korean with English abstract)
  21. Tabuchi, M., T. Abiko, and T. Yamaya, 2007: Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of experimental Botany 58(9), 2319-2327. https://doi.org/10.1093/jxb/erm016
  22. Wang, B., C. Guo, Y. Wan, J. Li, X. Ju, W. Cai, S. You, X. Qin, A. Wilkes, and Y. Li, 2020: Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system. Science of the Total Environment 706, 136063.
  23. Wang, D., Heckathorn S. Wang X., Philpott S, 2012: A meta-analysis of plant physiological and growth response to temperature and elevated CO2. Oecologia 169, 1-13. https://doi.org/10.1007/s00442-011-2172-0
  24. Wang, J., C. Wang, N. Chen, Z. Xiong, D. Wolfe and J. Zou, 2015: Response of rice production to elevated [CO2] and its interaction with rising temperature or nitrogen supply: a meta-analysis. Climatic change 130, 529-543. https://doi.org/10.1007/s10584-015-1374-6
  25. Wang, W., C. Cai, J. He, J. Gu, G. Zhu, W. Zhang, J. Zhu, and G. Liu, 2020: Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research 248, 107605.
  26. Yang, L., J. Huang, H. Yang, G. Dong, J. Liu, G. Liu, J. Zhu, and Y. Wang, 2007. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crop Research 100, 189-199. https://doi.org/10.1016/j.fcr.2006.07.003
  27. Ziska, L. H., O. Namuco, T. Moya, and J. Quilang, 1997: Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal 89(1), 45-53.  https://doi.org/10.2134/agronj1997.00021962008900010007x