DOI QR코드

DOI QR Code

Spring Shoot Damage and Cold Hardiness of Grape in Different Varieties and Phenological Stages

봄철 포도 신초 저온 피해 양상과 품종별 전엽기 내한성 비교

  • Dongyong Lee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Suhyun Ryu (Department of Digital Agriculture, Rural Development Administration) ;
  • Jae Hoon Jeong (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Jeom Hwa Han (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Jung-Gun Cho (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Seul-Ki Lee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Sihyeong Jang (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 이동용 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 류수현 (농촌진흥청 디지털농업추진단) ;
  • 정재훈 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조정건 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 이슬기 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 장시형 (농촌진흥청 국립원예특작과학원 과수과)
  • Received : 2023.11.08
  • Accepted : 2023.12.16
  • Published : 2023.12.30

Abstract

Grapes are one of the most important fruit trees both domestically and globally. Recently, changes in plant phenology and frequent low temperatures due to climate change are increasing the possibility of damage to grape shoots in spring, which is a serious threat to grape production. This study was conducted to investigated the severity of shoots damage and the change of free sugar content in the plant organs by phenological stage, especially, from germination to leafing period. Furthermore, in order to compare the cold hardiness among grape varieties including 'Campbell Early', 'Kyoho' and 'Shine Muscat' widely grown in Korea, lethal temperature (LT50) and free sugar content by grape variety were analyzed. Shoot damage by low temperatures continued to increase as the phenological stage progressed gradually, from the bud burst to the fourth leafing stage. On the other hand, the free sugar content of each organ except leaves continued to decrease, showing pattern to similar to cold hardiness. This indicates a close relationship between free sugar content and cold hardiness. In terms of cold hardiness comparison among grape varieties, 'Shine Muscat' showed the highest cold resistance in the leafing stage with the lowest LT50 and the highest total free sugar content. Next was 'Kyoho' and 'Campbell Early'. There are clear differences in cold hardiness depending on the variety. However, it is not the same at all growth stage. It may change according to phenological stage and influenced by free sugar content at that time.

포도는 국내뿐만 아니라 세계적으로도 중요도가 높은 과수 중 하나이다. 최근 기후변화에 따른 생물계절 단계의 변화와 이상저온 발생은 봄철 포도 신초 피해의 발생가능성을 높이고 있으며, 안정적인 포도 생산에 위협이 되고 있다. 본 연구는 저온에 의한 발아기부터 초기 전엽기까지의 생물계절단계별 신초의 피해 정도와 수체 내 당 함량의 관계를 알아보고, 우리나라 주요 품종인 '캠벨얼리', '거봉', '샤인머스켓' 품종의 전엽기 기준 내한성 비교를 위해 수행하였다. 포도 '캠벨얼리'의 생물계절단계별 LT50 추정을 통한 내한성 평가 결과, 발아기부터 4매 전엽기까지 생물계절단계가 진행될수록 내한성은 지속적으로 감소하였다. 각 기관별 당함량은 신초 정단, 화수, 줄기에서 마찬가지로 지속적인 감소가 두드러졌다. 따라서 신초의 내한성 감소는 당 함량에 기인한 것으로 생각되었다. 국내 주요 품종인 '캠벨얼리', '거봉', '샤인머스켓'의 전엽기 내한성 비교 결과, 전체 당 함량이 가장 높은 샤인머스켓이 가장 낮은 LT50을 보여 가장 높은 내한성을 나타내었다. 그 다음으로는 '거봉', '캠벨얼리' 순이었다. 내한성은 품종마다 다르지만 이는 절대적이지 않으며 생물계절단계에 따라서도 변화하는 것으로 생각되었다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 공동연구사업 '주요 과수의 이상저온 피해 해석 및 경감기술 개발(RS-2020-RD009027)' 연구 과제의 지원에 의해 수행되었음.

References

  1. Aghakouchak, A., F. Chiang, L. S. Huning, C. A. Love, I. Mallakpour, O. Mazdiyasni, H. Moftakhari, S. M. Papalexiou, E. Ragno, and M. Sadegh, 2020: Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary Sciences 48, 519-548. https://doi.org/10.1146/annurev-earth-071719-055228
  2. Anchordoguy, T. J., A. S. Rudolph, J. F. Carpenter, and J. H. Crowe, 1987: Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24, 324-331. https://doi.org/10.1016/0011-2240(87)90036-8
  3. Cartechini A., and A. Palliotti. 1995: Effect of shading on vine morphology and productivity and leaf gas exchange characteristics in grapevines in the field. American Journal of Enology and Viticulture 46, 227-234. https://doi.org/10.5344/ajev.1995.46.2.227
  4. Dami, I. E. and Y. Zhang, 2023. Variations of freezing tolerance and sugar concentrations of grape buds in response to foliar application of abscisic acid. Frontiers in Plant Science 14, 1084590.
  5. Dami, I. E., S. Ennahli, and Y. Zhang, 2011. Assessment of Winter Injury in Grape Cultivars and Pruning Strategies Following a Freezing Stress Event. American Journal of Enology and Viticulture 63, 106-111. https://doi.org/10.5344/ajev.2011.11040
  6. Ershadi, A., R. Karimi, and K. N. Mahdei, 2016: Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta physiologiae plantarum 38, 1-10. https://doi.org/10.1007/s11738-015-2021-6
  7. Evans, K. J., P. K. Bricher, and S. D. Foster, 2019: Impact of frost injury incidence at nodes of Pinot Noir on fruitfulness and growth-stage lag. Australian journal of grape and wine research 25(2), 201-211. https://doi.org/10.1111/ajgw.12381
  8. Fennell, A., 2004: Freezing tolerance and injury in grapevines. Journal of Crop Improvement 10(1-2), 201-235. https://doi.org/10.1300/J411v10n01_09
  9. Ferguson, J. C., M. M. Moyer, L. J. Mills, G. Hoogenboom, and M. Keller, 2014: Modeling dormant bud cold hardiness and budbreak in twenty-three Vitis genotypes reveals variation by region of origin. American Journal of Enology and Viticulture 65, 59-71. https://doi.org/10.5344/ajev.2013.13098
  10. Fuller, M. P. and G. Telli, 1999: An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Annals of Applied Biology 135, 589-595. https://doi.org/10.1111/j.1744-7348.1999.tb00891.x
  11. Gonzalez Antivilo, F., R. C. Paz, J. Tognetti, M. Keller, M. Cavagnaro, E. E. Barrio, and F. Roig Junent, 2020: Winter injury to grapevine secondary phloem and cambium impairs budbreak, cambium activity, and yield formation. Journal of Plant Growth Regulation 39, 1095-1106. https://doi.org/10.1007/s00344-019-10051-w
  12. Hamman, R., I. E. Dami, T. Walsh, and C. Stushnoff, 1996: Seasonal carbohydrate changes and cold hardiness of Chardonnay and Riesling grapevines. American Journal of Enology and Viticulture 47, 31-36. https://doi.org/10.5344/ajev.1996.47.1.31
  13. Jiang, H. Y., W. Li, B. J. He, Y. H. Gao, and J. X. Lu, 2014: Sucrose metabolism in grape (Vitis vinifera L.) branches under low temperature during overwintering covered with soil. Plant Growth Regulation 72, 229-238. https://doi.org/10.1007/s10725-013-9854-z
  14. Karimi, R., 2019: Spring frost tolerance increase in Sultana grapevine by early season application of calcium sulfate and zinc sulfate. Journal of Plant Nutrition 42, 2666-2681. https://doi.org/10.1080/01904167.2019.1659343
  15. Kerepesi, I., M. Toth, and L. Boross, 1996: Water-soluble carbohydrates in dried plant. Journal of Agricultural and Food Chemistry 44, 3235-3239. https://doi.org/10.1021/jf960242b
  16. Kim, S., J. Nam, S. Jung, Y. Hur, H. Kim, and J. Park, 2017: Comparison of mid-winter coldhardiness by electrolyte leakage in shoots of 15 grape cultivars. Acta Horticulturae, 399-404.
  17. Leolini, L., M. Moriondo, G. Fila, S. Costafreda-aumedes, R. Ferrise, and M. Bindi, 2018: Late spring frost impacts on future grapevine distribution in Europe. Field Crops Research 222, 197-208. https://doi.org/10.1016/j.fcr.2017.11.018
  18. Lipe, W. N., L. Baumhardt, C. Wendt, and D. Rayburn, 1992: Differential thermal analysis of deacclimating Chardonnay and Cabernet Sauvignon grape buds as affected by evaporative cooling. American Journal of Enology and Viticulture 43, 355-361. https://doi.org/10.5344/ajev.1992.43.4.355
  19. Lorenz, D., K. Eichhorn, H. Bleiholder, R. Klose, U. Meier, and E. Weber, 1994: Phanologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. WeinWissenschaft 49, 66-70.
  20. Meier, M., J. Fuhrer, and A. Holzkamper, 2018: Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley. International Journal of Biometeorology 62, 991-1002. https://doi.org/10.1007/s00484-018-1501-y
  21. Perry, K. B. 1998: Basics of frost and freeze protection for horticultural crops. HortTechnology 8, 10-15. https://doi.org/10.21273/HORTTECH.8.1.10
  22. Poling, E. B. 2008: Spring Cold Injury to Winegrapes and Protection Strategies and Methods. HortScience 43, 11.
  23. Proebsting, E. and V. Brummund, 1978: Yield and Maturity of 'Concord' Grapes following Spring Frost1. HortScience 13, 541-543. https://doi.org/10.21273/HORTSCI.13.5.541
  24. Reisch, B. I., C. L. Owens, and P. S. Cousins, 2012: Grape. Fruit breeding, 225-262.
  25. Sakai, A. and W. Larcher, 2012: Frost survival of plants: responses and adaptation to freezing stress, Springer Science & Business Media.
  26. Schultze, S. R., P. Sabbatini, and J. A. Andresen, 2014: Spatial and temporal study of climatic variability on grape production in southwestern Michigan. American Journal of Enology and Viticulture 65, 179-188. https://doi.org/10.5344/ajev.2013.13063
  27. Sgubin, G., D. Swingedouw, G. Dayon,, I. Garcia de Cortazar-Atauri, N. Ollat, C. Page, and C. van Leeuwen, 2018: Late frost risk for grapevine in France. In EGU General Assembly Conference Abstracts, 17817.
  28. Snyder, R. L. and J. Melo-abreu, 2005: Frost protection: fundamentals, practice and economics. Volume 1. FAO.
  29. Sun, L. L., Y. P. Du, Q. Y. Duan, and H. Zhai, 2018: Root temperature regulated frost damage in leaves of the grapevine Vitis vinifera L. Australian Journal of Grape and Wine Research 24, 181-189. https://doi.org/10.1111/ajgw.12328
  30. Trought, M. C. T., G. S. Howell, and N. Cherry, 1999: Frost Damage and Management in New Zealand Vineyards. Lincoln University, New Zealand.
  31. Webb, L., P. Whetton, J. Bhend, R. Darbyshire, P. Briggs, and E. Barlow, 2012: Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nature Climate Change 2, 259-264. https://doi.org/10.1038/nclimate1417
  32. Zabadal, T. J., I. E. Dami, M. C. Goffinet, T. E. Martinson, and M. L. Chien, 2007: Winter injury to grapevines and methods of protection. Michigan State University Extension, USA.