• Title/Summary/Keyword: nitrogen ratio

Search Result 2,565, Processing Time 0.033 seconds

Food Component Characteristics of Cultured and Wild Oysters Crassostrea gigas and Ostrea denselamellos in Korea (양식산 및 자연산 굴(Crassostrea gigas, Ostrea denselamellos)의 성분 특성)

  • Lee, Yeong-Man;Lee, So-Jeong;Kim, Seon-Geun;Hwang, Young-Sook;Jeong, Bo-Young;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.586-593
    • /
    • 2012
  • To identify the food component characteristics of seven oysters(four cultured oysters and two wild oysters Crassostrea gigas and one dendely lamellated oyster Ostrea denselamellos Korean name beotgul) in Korea, the proximate, fatty/amino acid, mineral compositions, texture, color, chemical and taste compounds were investigated. The proximate compositions were not significantly different between cultured and wild oysters, whereas beotgul had lower levels of crude protein, ash and lipid content, and a higher carbohydrate content. The amino nitrogen contents of the three main types were 232.8-258.2, 160.5-213.9, and 218.5 mg/100 g, respectively, and the salinities were 1.5-1.7, 1.5-1.8, and 0.9%, respectively. Regarding the muscle texture, the shearing forces were 95-114, 105-132, and 170 g, respectively. Amounts of total amino acids of cultured, wild oysters and beotgul were 9,004-10,198, 8,165-8,942, and 7,767 mg/100 g, respectively. The major amino acids were aspartic acid (Asx), glutamic acid (Glx), proline, alanine, leucine, phenylalanine, lysine and arginine. Regarding inorganic ions, beotgul had much lower Fe and S contents than the cultured and wild oysters. The major fatty acids of cultured and wild oysters were 16:0, 18:0, 16:1n-9, 18:1n-9, 22:1n-9, 16:4n-3, 20:5n-3, and 22:6n-3, and there was little difference between the two. Beotgul had a higher polyenes ratio, i.e., 20:5n-3, and a lower monoenes ratio than the cultured and wild oysters. The free amino acid contents of cultured, wild oysters and beotgul extracts were 1,444-1,620, 1,017-1,277, and 1,144 mg/100 g, respectively, and the major free amino acids were taurine, glutamic acid, glycine, alanine, tryptophan, ornithine, and lysine. There was a little difference in the glycine, tryptophan, ornithine, and arginine contents.

In vitro Rumen Fermentation Patterns of Environment Friendly Whole Crop Barley, Italian Ryegrass and Rice Straw Silages (친환경 청보리, 이탈리안 라이그라스, 볏짚사일리지의 In vitro 반추위 발효성상 비교연구)

  • Mbiriri, David Tinotenda;Oh, Sung-Jin;Lee, A-Reum;Chae, Jung-Il;Choi, Chang-Weon;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 2012
  • Rumen fermentative characteristic is useful indicators of the quality of ruminant feed stuffs and diets. An in vitro rumen fermentation experiment was therefore carried out to compare fermentation patterns among three forage sources. These were whole crop barley (WCBS), Italian ryegrass silage (IRGS) and rice straw silages (RSS). Rice straw (RS) was the control, making the treatments 4 in total. Forages were randomly allocated to serum bottles. The incubation times were arranged 0, 3, 6, 9, 12, 24, 48 and 72h at $39^{\circ}C$, respectively. Each forage source was replicated 3 times per incubation time. At each sampling time, total gas and pH were measured, whilst individual volatile fatty acids (VFAs), total volatile fatty acids (TVFAs) and ammonia nitrogen ($NH_3$-N) were determined later after storing samples at $-20^{\circ}C$. Acetate: Propionate ratio (A/P) was then calculated. Forage source had a significant effect (P<0.001) on pH and $NH_3$-N. RSS maintained higher pH values than the rest of the forage sources. A decreasing pH trend with increased time of incubation, in agreement with literature, was observed for all forage sources. WCBS recorded $NH_3$-N values higher than all the other treatments. Total gas, individual and total VFA and A/P ratio were not affected by forage source. However, there was a significant difference in all parameters (p<0.05) among forage sources at sampling periods at 3 to 72h. Therefore, the present results indicating that WCBS, IRGS, RS and RSS maintained in vitro rumen pH above the critical value. Also, WCBS produced the highest NH3-N and on this merit could be of better nutritive value, in vivo, in the ruminant.

Manufacturing of Organic Composts from Shiitake Bedlogs (표고버섯 재배폐골목의 유기질 비료화)

  • Cho, Nam-Seok;Oh, Byung-Ik;Kim, Dok-Sik;Min, Du-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • With increased utilization of chemical fertilizer, soil fertility is getting serious problem. As a result, using organic soil conditioner (woody wastes or sawdust compost) would be only solution to recover soil vitality. In this study, manufacturing and characteristics of organic soil conditioner from Shiitake bedlogs (woody wastes) were studied. Also, to investigate the effect of continuous application of this bedlog compost on growth of plants, growth tests for radish and tree seedlings were done. The results are as follows ; Analytical results of decayed and fresh wood materials showed almost same as its wood components. The mixing ratio of raw materials with the other filling materials is essential for the manufacturing as well as good quality of its compost during composting process. In this experiment, mixing 12kg of urea, 25kg of lime, 40kg of chicken shit, and small amount of fermentation aids corresponding to I ton of sawdust resulted in good composts. Their moisture contents were adjusted to about 55%. Temperature of pile, in composting process, rose after I week and kept about above $60^{\circ}C$ for certain period. They were turned two times, 30th and 59th day, respectively, after piling. This bedlog compost contained 81.7% of high organic matter, 1.4% of a little nitrogen, 6.75 of pH and 25 - 30 of C/N ratio. There were no harmful effect on germination and growth of plants, such as radish and softwood and hardwood seedlings. Concerned to the effect of bedlog compost on soil temperature, the compost did not affect plant growth by changing soil temperature abruptly, but compensated the soil temperature such as a little increasing on the early morning, a little decreasing on the mid-day or afternoon (pm 2:00), and increasing on the early evening (pm 6:00).

  • PDF

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -IV. Dissimilartory Nitrate Reduction and Protein Characteristics of Indigenous Soybean Rhizobia (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)IV보(報) 토착대두근류균(土着大豆根瘤菌)의 질산환원(窒酸還元) 및 균체단백질(菌體蛋白質) 특성(特性))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Ju-Yeong;Lee, Sang-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.275-283
    • /
    • 1987
  • In order to find out the effectiveness of nitrogen fixation in rhizobia-legume symbiotic relationship, ecological and physiological characteristics of indigenous rhizobia distributed in Korean soils, that is, dissimilatory nitrate reduction patterns of indigenous soybean rhizobia isolated from four different soils, and differences in one-and two-dimensional polyacrylamide gel electrophoretic pattern of proteins among the each subgroups of Bradyrhizobium japonicum and Rhizobium fredii, were investigated. The results were summarized as follows: 1. The indigenous soybean rhizobia isolated from four different soils could be classified into 4 groups depending on growth rate and dissimilatory nitrate reduction pattern, that is, $S_1$ (slow-grower; Bradyrhizobium japonicum and nitrate denitrifier), $S_2$ (slow-grower; Bradyrhizobium japonicum and nitrate respirer), $F_1$ (fast-grower; Rhizobium fredii and denitrifier), and $F_2$ (fast-grower; Rhizobium fredii and nitrate respirer). 2. The population ratio of fast- to slow-growing R. japonicum was 39% to 61%, and the ratio of denitrifier to nitrate respirer was 31% to 69% and 89% to 11% in fast and slow-grower, respectively. Some differences were observed between fast- and slow-growing R. japonicum but no significant difference was observed between denitrifier and nitrate respirer within same growth type by one and two dimensional SDS-polyacrylamide gel electrophoretic patterns.

  • PDF

Effects of Organic Materials and Precipitation on Nitrogen Uptake Efficiency in Sorghum ${\times}$ Sudangrass Hybrid (유기자재와 강수량이 수수${\times}$수단그라스 교잡종의 질소이용효율에 미치는 영향)

  • Choi, Hyun-Sug;Lee, Youn;Jung, Jung-Ah;Jee, Hyeong-Jin;Lee, Sang-Min;Kuk, Yong-In;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.357-368
    • /
    • 2012
  • This study was conducted to evaluate soil inorganic N concentrations and N uptake efficiency of sorghum ${\times}$ sudangrass hybrid (Sorghum bicolor (L.) Moench) as affected by organic nutrient sources from 2009 to 2011. The treatments included chemical fertilizer, compost, oilcake, alfalfa hay mulch, and control. Nutrient applications were made at rates equivalent to approximately 210 kg of actual N per hectare. The precipitation during the growth period from May to September was higher in 2011, followed by 2009, and 2010. Oilcake had the lowest C:N ratio in the raw materials. Compost treatment slowed N-mineralization rate in soil during the measured years. Soil mineral nutrition and dry matter production were not consistently affected by treatments, but the dry matter production was negatively correlated with the amount of precipitation from May to September for three years. Chemical fertilizer treatment increased N efficiency in plants in the first two years, observing with lower N efficiency in plants treated with compost for 3 years. Increased precipitation from June to August improved N efficiency in sudangrass plants treated with compost but reduced the efficiency with the chemical fertilizer. Total dry matter production and N efficiency in plants were not affected by the C:N ratio of the raw materials rather than weather condition.

Characterization and Preparation of Al-Pillared Clay (Aluminium-Pillared Clay의 제조 및 특성)

  • Park, Se-Jun;Ha, Baik-Hyon;Jeong, Soon-Yong;Suh, Jeong-Kwon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.304-309
    • /
    • 1999
  • Aluminum-pillared clay was prepared by the intercalation of Al-hydroxy oligomer into domestic bentonite. The solid products are characterized by XRD, nitrogen adsorption/desorption, EDX, and SEM. The solid products show relatively high specific surface areas in the range of $104{\sim}228m^2/g$, and their specific surface area, micropore surface area, and micropore volume increase with increasing the mole ratio of OH/Al. From the results of pore size distribution calculated by BJH equation, it was found that aluminum-pillared clay also contains much mesopore near $40{\AA}$. These results indicate that Al-hydroxy oligomer was intercalated into bentonite, and aluminum oxide was pillared among the layers of bentonite, and micropore and mesopore was finally developed into layers. As OH/Al mole ratio increases, the thermal stability of aluminum-pillared clay increases. This result can be explained by the fact that the density of layers is increased due to the formation of aluminum pillars.

  • PDF

Prospects of Stable Production Technologies for Food Crops (식량 안정생산기술의 전망)

  • Chae Je Cheon;Gang Yang Sun;Lee Yeong Ho;Nam Jung Hyeon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.11a
    • /
    • pp.102-144
    • /
    • 1999
  • The major problems of food crop cultivation in Korea are low yield of most crops except rice. inefficient cultivation techniques for aged farmers. and low international competibility. Therefore, development of cultivation techniques of food crops should aim the yield. quality improvement, labor reduction and production cost. The primary issue for increasing the yield of soybean, barely and wheat is to reduce the yield gap between the farmer's yield and recommended ones of experiment station. More advanced cultivation techniques needs to be developed. and/or the conventional breeding methods to be reconsidered. The newly developed labor-saving mechanized technique needs to reduce labor hours , and the cost of agricultural implements and machineries. In other words the labor-saving mechanized technique should be developed based on the improvement of total farming system as well as systemic fundamental innovation of cultural methods. The efficiency of solar energy use in food production of Korea in 1997 is as low as $0.52{\%}$ so there is much room to increase yield. It is recommendable that the concept of food Production should be changed to energy Producing efficiency Per unit area basis from volume and weight of food materials. Moreover, introduction of resonable cropping system is needed to increase yield of main crops, farmer's income, solar energy use efficiency, and decrease of land service expenditure. Current cropping system emphasized on economic crops. especially in vegetables , is not desirable for resonable use of arable land. stability of agricultural management and staple food crop self-sufficiency ratio. It is desirable to increase food crops . that are energy of carbohydrate and protein rich and land dependent crops. in cropping system. And the agronomist should develop the cultural methods to replace food crops for food self-sufficiency and stable farming management instead of economic crops in current cropping system. Low-input and environmentally-sound crop cultivation techniques, especially nitrogen-reducing culture technique which is directly related to food crop quality, also needs to be developed urgently. The extended cultivation of corn in upland and barely and wheat in lowland as a feed stuffs is recommended to prevent further decrease of food self-sufficiency ratio, which is mainly caused by the high reliance on imported feed grain. It is also considered that the calculation and presentation methods of standard agricultural income needs to be improved. The current calculation method uses unit land area of 10a regardless of crop kinds , characteristics of agricultural management and cultivation scale. So, it is apt to lead misunderstanding of farm income value. Therefore. it should show an income of average farmers for certain number of years. Research and developing system for food producing is not desirable because they are conducted currently individual crop and mono-culture basis. But actual agricultural income is usually earned by cropping system including upland and lowland. For example. the barley and wheat is usually cultivated in double cropping system. The cooperation among research institutes such as university agribusiness. government and farmers is indispensible. The public information and education on importance and consumption habit of food crops is necessary in Korean society to increase food self-sufficiency through nationwide cooperation.

  • PDF

Effect of Microorganism Mixture Application on the Microflora and the Chemical Properties of Soil and the Growth of Vegetables in Greenhouse (미생물혼합제제 처리가 토양의 미생물상과 화학적 특성 및 시설 채소 생육에 미치는 영향)

  • Ryu, Il-Hwan;Jeong, Su-Ji;Han, Seong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.368-374
    • /
    • 2012
  • BACKGROUND: The urgency of feeding the world's growing population while combating soil pollution, salinization and desertification requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of soil nutrient and soil microorganism. Interest in the utilization of microbial fertilizer has increased. A principle of nature farming is to produce abundant and healthy crops without using chemical fertilizer and pesticides, and without interrupting the natural ecosystem. Beneficial microorganisms may provide supplemental nutrients in the soil, promote crop growth, and enhance plant resistance against pathogenic microorganisms. We mixed beneficial microorganisms such as Bacillus sp. Han-5 with anti-fungal activities, Trichoderma harziaum, Trichoderma longibrachiatum with organic material degrading activity, Actinomycetes bovis with antibiotic production and Pseudomonas sp. with nitrogen fixation. This study was carried out to investigate the mixtures on the soil microflora and soil chemical properties and the effect on the growth of lettuce and cucumber under greenhouse conditions. METHODS AND RESULTS: The microbial mixtures were used with each of organic fertilizer, swine manure and organic+swine manure and compared in regard to changes in soil chemical properties, soil microflora properties and crop growth. At 50 days after the treatment of microorganism mixtures, the pH improved from 5.8 to 6.3, and the EC, $NO_3$-Na and K decreased by 52.4%, 60.5% and 29.3%, respectively. The available $P_2O_5$ and $SiO_2$ increased by 25.9% and 21.2%, respectively. Otherwise, the population density of fluorescent Pseudomonas sp. was accelerated and the growth of vegetables increased. Moreover, the population density of E. coli and Fusarium sp., decreased remarkably. The ratio of bacteria to fungi (B/F) and the ratio of Actinomycetes bovis to fungi (A/F) increased 2.3 (from 272.2 to 624.4) and 1.7 times (from 38.3 to 64), respectively. Furthermore, the growth and yield of cucumber and lettuce significantly increased by the treatment of microorganism mixtures. CONCLUSION(S): These results suggest that the treatment of microorganism mixtures improved the chemical properties and the microflora of soil and the crop growth. Therefore, it is concluded that the microorganism mixtures could be good alternative soil amendments to restore soil nutrients and soil microflora.

The Preparation of Activated Carbon from Coffee Waste: ZnCl2-Activation (커피폐기물을 이용한 활성탄의 제조: ZnCl2-활성화)

  • You, S.H.;Kim, H.H.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.509-515
    • /
    • 1998
  • Activated coffee chars were prepared from coffee waste by chemical activation with zinc chloride. In this study, the following processes were carried out ; roasting step, carbonization step, chemical activation step, and washing and drying step. The roasting step of coffee waste was carried out at $300{\sim}400^{\circ}C$ for 10 minutes. The optimum condition of carbonization was at $650^{\circ}C$ for 1 hour. The most important parameter in chemical activation of coffee char was found to be the chemical ratio of activation agents. Activated coffee chars prepared by various activation methods were characterized in terms of the nitrogen BET surface area, the BJH pore volume and pore size distribution at 77 K. The $N_2$-BET surface areas and total pore volume of coffee chars prepared by the chemical activation with $ZnCl_2$ were determined as about $1110{\sim}1580m^2/g$ and $0.51{\sim}0.81cm^3/g$, respectively. Scanning Electron Microscopy (SEM) was used to observe the porosity and surface of activated coffee chars. From the results of SEM analysis, it was shown that active surface and many pores were formed after the chemical activation. The preparation of the activated coffee char from coffee waste was successfully carried out, which previews a possibility for exploitation of resources by recycling the waste.

  • PDF

Analysis of the Heat of Absorption Based on the Chemical Structures of Carbon Dioxide Absorbents (이산화탄소 흡수제의 화학구조별 반응열량 특성 연구)

  • Kwak, No Sang;Lee, Ji Hyun;Eom, Yong Seok;Kim, Jun Han;Lee, In Young;Jang, Kyung Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.135-140
    • /
    • 2012
  • In this study, the heats of absorption of $CO_2$ with aqueous solutions of primary, secondary and tertiary amine aqueous solutions were measured in the commercial reaction calorimeter SIMULAR (HEL, UK). The heats of absorption of 30 wt% amine aqueous solutions of MEA (monoethanolamine, primary amine), EAE(2-(ethylamino)ethanol, secondary amine), and MDEA (methyldiethanolamine, tertiary amine) were measured as function of the $CO_2$ loading ratio at $40^{\circ}C$, in each case. In addition, the heats of absorption of sterically-hindered amine aqueous solutions of AMP(2-amino-2-methyl-1-propanol, primary amine), DEA(diethanolamine, secondary amine) and TEA(triethanolamine, tertiary amine) were measured to observe the steric hindrance effect. The heat of absorption is high in the following order regardless of the steric hindrance: primary amine > secondary amine > tertiary amine. The heats of absorption of amines having sterically-hindered substituents surrounding nitrogen atoms are relatively low compare to that of sterically-free amines, although the difference is very small.