• Title/Summary/Keyword: nitrogen form

Search Result 516, Processing Time 0.032 seconds

Evaluation of continuous cultivation of anaerobic ammonium oxidation bacteria immobilized on synthetic media and granular form (입상형태와 합성담체에 고정화된 혐기성 암모늄 산화균의 연속배양 특성 평가)

  • Kim, Jiyoung;Yun, Wonsang;Jung, Jinyoung;Choi, Daehee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • The activity of anaerobic ammonium oxidation (ANAMMOX) immobilized in synthetic media (Poly Ethylene Glycol, PEG) and granular form was evaluated comparatively to investigate the effect of influent nitrogen concentration and exposure of oxygen. In ANAMMOX granule reactor, when concentration of influent total nitrogen increased to 500mg/L, removal efficiency of ammonium, nitrite and nitrate were shown to 90.5±6.5, 96.6±4.9, and 93.2±6.1%, respectively. In the case of the PEG gel, it showed lower nitrogen removal performance, resulting in that the removal efficiency of ammonium, nitrite and nitrate were shown to 83.3±13.0, 96.4±6.1, and 90.3±7.5%, respectively. In second step, when exposed to oxygen, the nitrogen removal performance in the ANAMMOX granule reactor also remained stable, but the activity of PEG gel ANAMMOX was found to be inhibited. Consequently, the PEG gel ANAMMOX was a higher sensitivity than that of granular ANAMMOX with two variables applied in this study.

Flammability Limit and Flame Instability of Nitrogen-Diluted LPG Fuel (질소로 희석된 LPG 연료의 가연한계와 화염 안정성)

  • Ahn, Taekook;Nam, Younwoo;Lee, Kyung-Woo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.319-321
    • /
    • 2012
  • The flammability limit and the flame instability of nitrogen-diluted LPG fuel was experimentally studied on a co-flow flame configuration. The combustion reaction of nitrogen-diluted hydrocarbon with air could be interpreted as the equivalent reaction of pure fuel with nitrogen-diluted air. Nitrogen-diluted LPG with nitrogen up to 90 % of nitrogen mole fraction in fuel, which is close to the flammability limit, could form a co-flow flame. Various parameters such as laminar or turbulent flame, the existence of diffusion flame with pure fuel, air temperature could affect the limit of flame formation.

  • PDF

Process Optimization for the Laser Cutting of Cold Rolled STS Sheet (냉연 스테인리스강판의 레이저 절단 특성)

  • 이기호;김기철
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.59-68
    • /
    • 1996
  • This study was aimed to characterize the laser cutting process for the cold rolled stainless steel sheet. The principal process parameters of the cutting process were applied to both the continuous wave form and the pulsed wave form for the laser output mode. The laser-oxygen cutting process and the laser-nitrogen cutting process were also considered to characterize the quality and efficiency of the cutting process. The laser-oxygen cutting process revealed the better productivity than the laser-nitrogen cutting process, since the laser energy and the exothermic oxidation energy exerted on the laser-oxygen cutting process simultaneously during the entire cutting process. However, the straightness of the cutting section, which was considered as the most important factors, was inferior to that of the laser-nitrogen cutting process due to the formation of chromum oxide on the cutting surface. Frequency and duration of the pulsed wave form act as the main factors for the better quality, When the frequency increased from 100 Hz to 200 Hz and the duty increased from 20% to 40%, the quality factors such as the height of dross and the surface roughness were improved remarkably. The increase in the frequency from 200 Hz to 300 Hz, on the other hand, revealed the less effective in the cutting quality.

  • PDF

Characterization of a Nitrogen Fixing Bacteria Mycobacterium hominis sp. AKC-10 Isolated from the Wetland (습지에서 분리한 질소고정 세균인 Mycobacterium hominis sp. AKC-10의 특성)

  • Hong, Sun-Hwa;Shin, Ki-Chul;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.302-307
    • /
    • 2010
  • Nitrogen is an element need to grow plants growth. Plants take up nitrogen in the form of nitrate or ammonium. Most of plants absorb nitrogen source as fertilizers. But from 50 to 70% of fertilizers applied were washed away. This study was conducted to isolate free-living nitrogen fixing bacteria from reed and to examine its beneficial traits for developing sustainable biofertilizers. Enriched consortium obtained from a reed in Ansan was developed for the fixing of nitrogen. Nitrogen fixing bacteria isolated from an enriched culture in Congo Red Medium was analyzed by 16s rDNA sequencing. AKC-10 was isolated and shown to have excellent nitrogen fixing ability. The optimum conditions of nitrogen fixing ability were $25^{\circ}C$ ($237.50{\pm}39.65\;nmole{\cdot}mg-protein^{-1}{\cdot}h^{-1}$ and pH 7 ($168.335{\pm}12.84$ nmole/hr mg-protein). It was identified as Microbacterium hominis [(AKC-10 (similarity : 99%)]. This strain was had to IAA (indole-3-acetic acid) productivity and ACC(1-aminocyclopropane-1-carboxylic acid) deaminase activity. Therefore, Microbacterium hominis AKC-10 stimulated plant development in the soil, enhancing the efficiency of remediation.

Analysis of the microstructure of reactively sputtered Ta-N thin films (반응성 스퍼터링방법으로 증착된 Ta-N 박막의 미세구조 분석)

  • 민경훈;김기범
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.253-260
    • /
    • 1994
  • Ta-N films were reactively sputter deposited by dc magnetron sputtering from a Ta target with a various Ar-N, gas ratio. Electrical resistivity of pure Ta film was 150$\mu$$\Omega$cm and decreased initially with nitrogen addition, and then increased to a value of 220$\mu$$\Omega$-cm~260$\mu$$\Omega$-cm at 9%~23% nitrogen partial flow. Rutherford backscattering spectrometry(RBS) and Auger electron spectroscopy (AES) analysis show that nitrogen content in the film is increased with the nitrogen partial flow. The film contains 58at.% nitrogen at 36% nitrogen partial flow. Both the phase and the microstructure of the as-deposisted films were investigated by x-ray diffractometry(XRD) adn transmission electron microscopy (TEM) at various nitrogen content. The phase of pure Ta film is identified as $\beta$-Ta with a 200$\AA$~300$\AA$ grain size. The phase of Ta film is changed to bcc-Ta as small amount of nitrogen is added. Crystalline Ta2N film was deposited at 24at.% nitrogen content. Amorphous phase is formed over a range of nitrogen content from about 33at.% to 35at.% while crystalline fcc-TaN is observed to form at 39at.%~48at.% nitrogen content.

  • PDF

Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers

  • Gunun, P.;Wanapat, M.;Anantasook, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1689-1697
    • /
    • 2013
  • This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS) and urea-treated (3%) rice straw (UTRS), and factor B was type of physical form of rice straw: long form rice straw (LFR) and chopped (4 cm) rice straw (CHR). The steers were offered the concentrate at 0.5% body weight (BW) /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p<0.05) by urea treatment. Ruminal pH were decreased (p<0.05) in UTRS fed group, while ruminal ammonia nitrogen ($NH_3$-N) and blood urea nitrogen (BUN) were increased (p<0.01) by urea treatment. Total volatile fatty acid (VFA) concentrations increased (p<0.01) when steers were fed UTRS. Furthermore, VFA concentrations were not altered by treatments (p>0.05), except propionic acid (C3) was increased (p<0.05) in UTRS fed group. Nitrogen (N) balance was affected by urea treatment (p<0.05). Microbial protein synthesis (MCP) synthesis were greater by UTRS and CHR group (p<0.05). The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05). From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers.

Influence of Vegetaton Type on the Intensity of Ammonia and Nitrogen Dioxide Liberation from Soil (토양으로부터 휘발되는 암모니아와 이산화질소의 소실에 대한 식피형의 영향에 대하여)

  • 김천민
    • Journal of Plant Biology
    • /
    • v.14 no.3
    • /
    • pp.43-46
    • /
    • 1971
  • Losses of nitrogenin the gaseous form were determined with closed systems in the filed under different vegetation types. Ammonia volatilization was greatest from the pine stand, and least from the sod stand, and was greatly reduced in all three sites in the rainy season due to the low temperature. There were only insignificant differences in the nitrogen dioxide volatilization from the soil of the three vegetation types. Losses of ammonia and nitrogen dioxide at various soil depth also showed little variation. Evidently the microbial activity responsible for the $NO_2$ loss was relatively unaffected by the changes in temperature and soil moisture content during the investigation.

  • PDF

Behavior of Nutrients in Runoff Water from a Small Rural Watershed (농촌 소유역 유출수에서의 영양염류의 거동)

  • Oh, Kwang-Young;Kim, Jin-Soo;Oh, Seung-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • The purpose of this study was to investigate characteristics of behavior of nutrients such as TN (Total nitrogen), TDN (Total dissolved nitrogen), TP (Total phosphorus) TDP (Total dissolved phosphorous) in runoff water from a nonpoint source dominated watershed ($6.67\;km^2$). Regular and intensive flow measurement and water sampling were taken during two years (February 2002 to January 2004) in the Ingyeong River, a tributary of the Han River. The mean concentrations of nutrients during rainy days were significantly (p < 0.05) higher than those during dry days. The mean TDN/TN ratio in rainy days (95%) is almost identical to that in dry days (96%), but mean TDP/TP ratio in rainy days (24%) significantly decreased compared with that in dry days (66%), suggesting that dominant form of TP is shifted from dissolved form to particulate form. Accordingly, the measures (.eg. filter strips, cover crops) to reduce soil erosion for fallow upland in the rainy season should be taken to control particulate phosphorous.

PHB Accumulation Stimulated by Ammonium Ions in Potassium-limited Cultures of Methylobacterium organophilum

  • Kim, Seon-Won;Kim, Pil;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.301-304
    • /
    • 1998
  • Methylobacterium organophilum can use nitrogen in the form of ammonium ions ($($NH_4$)_2SO_4\;and\;NH_4Cl) and from nonammonium sources such as glycine, alanine, peptone, and yeast extract. When potassium was limited, significantly more PHB was produced when the ammonium ion was the nitrogen source rather than a nonammonium form. With ammonium, the amount of PHB produced was 0.50-0.53 g PHB/l or $52.0~53.2\%$ of the dry cell weight. If nitrogen was from a nonammonium source, the respective values were 0.04~0.06 g PHB/1 or $8.1~11.3\%$ of dry cell weight. When ammonium sulfate was the sole source of nitrogen under potassium-limited conditions, cell growth and PHB accumulation increased as the pH increased from 6.0 to 7.5. Cell growth and PHB amount at pH 7.5 were 2.50 g dry cell weight/1 and 1.40 g PHB/1, respectively.

  • PDF

Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment

  • Khirul, Md Akhte;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.274-280
    • /
    • 2020
  • The marine sediment sustains from the anoxic condition due to increased nutrients of external sources. The nutrients are liberated from the sediment, which acts as an internal source. In hypoxic environments, anaerobic respiration results in the formation of several reduced matters, such as N2 and NH4+, N2O, Fe2+, H2S, etc. The experimental results have shown that nitrogen and sulfur played an influential, notable role in this biogeochemical cycle with expected chemical reductions and a 'diffusive' release of present nutrient components trapped in pore water inside sediment toward the bulk water. Nitate/ammonium, sulfate/sulfides, and ferrous/ferric irons are found to be the key players in these sediment-waters mutual interactions. Organonitrogen and nitrate in the sediment were likely to be converted to a form of ammonium. Reductive nitrogen is called dissimilatory nitrate reduction to ammonium and denitrification. The steady accumulation in the sediment and surplus increases in the overlying waters of ammonium strongly support this hypothesis as well as a diffusive action of the involved chemical species. Sulfate would serve as an essential electron acceptor so as to form acid volatile sulfides in present of Fe3+, which ended up as the Fe2+ positively with an aid of the residential microbial community.