• Title/Summary/Keyword: nitrogen fertilizer application rate

Search Result 315, Processing Time 0.031 seconds

Effect of the Application of Sucrose on Rapid Decrease of Soil Inorganic Nitrogen (Sucrose 처리가 토양 무기태질소의 신속 감소에 미치는 영향)

  • Ku, Hyun-Hwoi;Lim, Woo-Jin;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.424-429
    • /
    • 2010
  • To solve the problems with excessive accumulation of soil inorganic N and resulting saline soils from overuse of nitrogen fertilizer, the effect of sucrose application on decrease of soil inorganic N content and electrical conductivity (EC) was studied. Sucrose treatment greatly reduced ${NH_4}^+$-N content in soil. The amount of reduction was greater as the amount of sucrose treatment was increased. When ${NH_4}^+$-N content was reached the lowest point (about 10 mg $kg^{-1}$or lower), the C/N ratio, which determines the amount of sucrose treatment, was around 10 regardless of initial ${NH_4}^+$-N content. For the rate of ${NH_4}^+$-N reduction 15~36 hours was required to reduce the initial ${NH_4}^+$-N content to half, and 36~69 hours to lower ${NH_4}^+$-N content to the lowest point (about 10 mg $kg^{-1}$or lower). In addition, sucrose treatment greatly lowered ${NO_3}^-$-N content. In case of C/N ratio above 10, initial ${NO_3}^-$-N content of 348 mg $kg^{-1}$ was reduced to the lowest of 14~21 mg $kg^{-1}$. As for the rate of ${NO_3}^-$-N reduction by sucrose treatment, it took 36~60 hours for ${NO_3}^-$-N content to reach the lowest point for C/N ratio of 10 or higher, and it took 3 weeks, comparably longer time, for C/N ratio of 5. Lowering soil EC from sucrose treatment showed the same trend as ${NO_3}^-$-N content. As an important energy and carbon source for humankind, sugar should not be wasted and must be carefully applied to soil. In principle, the best way of preventing salt accumulation in soil is to optimize the fertilizer input. However, when over-fertilization should be dealt with, the sucrose treatment would be a possible and effective counter-measure to reduce overdosed nitrogen sources in soil.

Comparison of Nutrient Balance in a Reclaimed Tidal Upland between Chemical and Compost Fertilization for the Winter Green Barley Cultivation (간척농경지에서 비종에 따른 동계 청보리 재배 포장의 영양물질 수지 비교)

  • Song, In-Hong;Lee, Kyong-Do;Kim, Ji-Hye;Kang, Moon-Seong;Jang, Jeong-Ryeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • BACKGROUND: Along with the surplus rice production, introduction of upland crop cultivations into newly reclaimed tidal areas has gained public attentions in terms of farming diversification and farmers income increase. However, its impacts on the surroundings have not been well studied yet, especially associated with nutrient balance from reclaimed upland cultivation. The objective of this study was to investigate water and nutrient balance during winter barley cultivation as affected different fertilization methods. METHODS AND RESULTS: TN and TP balance for three different plots treated by livestock compost, chemical fertilizer, and no application were monitored during winter green barley cultivation (2010-2011) at the NICS Kyehwa experimental field in Jeonbuk, Korea. Nutrient content in soil and pore water near soil surface appeared to increase, while sub-soil layer remained similar with no fertilization plot. Livestock compost application appeared to increase organic matter content in surface soil compared to chemical fertilization. Crop yield was the greatest with livestock compost application (10.6 t/ha) followed by chemical fertilization (6.9 t/ha) and no application (1.8 t/ha). The nitrogen uptake rate was also greater with livestock compost (52.4%) than chemical fertilizer (48.1%). Phosphorus uptake rate was much smaller (about 7.0%) compared to nitrogen. Nutrient loss by surface and subsurface runoff seemed to be minimal primarily due to small rainfall amount during the winter season. Most of the remaining nutrients, particularly phosphate seemed to be stored in soil layer. Phosphate accumulation appeared to be more phenomenal in the plot applied by livestock compost with higher phosphorus content. CONCLUSION: This study demonstrated that livestock compost application to tidal upland may increase barley crop production and also improve soil fertility by supplying organic content. However, excessive phosphorus supply with livestock compost seems likely to cause a phosphate accumulation problem, unless the nitrogen-based fertilization practice is adjusted.

Nitrogen Balance in Paddy Soil of Control-Release Fertilizer Application (완효성비료 시용 논 토양중의 질소행동에 관한 연구)

  • Lee, Kyeong-Bo;Park, Chan-Won;Park, Kwang-Lai;Kim, Jong-Gu;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.157-163
    • /
    • 2005
  • The increasing of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. Particularly, nitrogen fertilization considerably influences rice productivity and agricultural environments. This experiment was conducted to study transformation of nitrogen and to determine the primary yield components responsible for yield differences in paddy soil. $NH_4-N$ concentration of NPK plot in surface water of paddy soil was $2.07mg\;L^{-1}$ at 5 days after transplanting, and then was decreased sharply due to rice absorption and loss to environment. $NO_3-N$ concentration of NPK plot in surface water was $3.97mg\;L^{-1}$ at 10 days after transplanting. $NO_3-N$ concentration range of CRF plot in surface water was $3-5mg\;L^{-1}$ at 30th after transplanting. The accumulation of $NH_3$ volatilization in NPK plot was $22.39kg\;ha^{-1}$, which accounted for 20% of N fertilizer applied but using of CRF fertilizer can reduce $NH_3$ volatilization by 67% in paddy soil. Use efficiency of N fertilizer was not different between CRF70% and CRF100% plot. Rate of N use efficiency were 27.4%, 51.2%, 49.0% in paddy field NPK, CRF70% and CRF100% plots respectively. The yield of CRF70% showed the best effect with 9.3% increase production ratio, compare with NPK plot.

Dry Matter Yield of Japanese Millet (Echinochloa crusgalli var. Frumentacea 〈Roxb.〉 Wight), Chemical Properties and Microbial Population of Soil as Affected by the Application of Fermented Sawdust Swine Manure in Cheju Volcanic Ash Soil Area (제주화산회토양에서 발효 톱밥 돈분 시용이 피의 건물수량, 토양의 이화학적 성질 및 토양 미생물에 미치는 영향)

  • Kim M. C.;Kim T. G.;Lee J. E.;Moon B. C.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.159-168
    • /
    • 2005
  • This experiment was carried out during the period from May to October 1998 to determine the effect of fermented sawdust swine manure application (SSM) on the herbage production of Japanese millet and soil properties in the Cheju brown volcanic ash soil. The randomized block design (T1 : basic chemical fertilizer, N 200 kg/ha + $P_2O_5\;300 kg/ha+K_2O$ 200kg/ha ; T2 : 1/2 basic chemical fertilizer, N $100+P_2O_5\;150+K_2O$ 100kg/ha; T3 : 1/2 basic SSM, N 100kg/ha, T4:basic SSM, N 200kg/ha; T5:2 times basic SSM, N 400 kg/ha ; T6:4 times basic SSM, N 800 kg/ha) was used. At the same application level of nitrogen 200kg/ha, the application of $100\%$ chemical fertilizer (T1) had significantly lower dry matter yield than that of $50\%$ chemical fertilizer and $50\%$ SSM (T2) or $100\%$ SSM (T4)(p<0.01). Dry matter yield increased with an increase of SSM application to N 400kg/ha level but decreased at N 800 kg/ha level. P, K and Ca contents of Japanese millet tended towards to decrease with an increase of SSM level. The application of chemical fertilizer lowered P and K content of Japanese millet in comparison with that of SSM (p<0.05). pH, available phosphorus. exchangeable potassium, Ca and Mg content of soil studied showed a significant increase with an increase of SSM application level (p<0.05). However, at the same application level of N 200kg/ha, there was statistically no significant difference between chemical fertilizer and SSM in those contents of soil after experiment. The bacterial number of soil among microbial population increased with an increase of SSM level, in June, 1998 (p<0.05), but there was no regular tendency, in October. The rate of bacteria to fungus in soil had a tendency to decrease with an increase of SSM level. In conclusion, it is recommended to use N 400kg/ha of SSM or N 100 kg/ha of chemical fertilizer+N 100 kg/ha of SSM for Japanese millet.

Effects of Co-digestate application on the Soil Properties, Leachate and Growth Responses of Paddy Rice (통합혐기소화액의 시용이 벼 생육 및 논토양 환경에 미치는 영향)

  • Hong, Seung-Gil;Shin, Joung-Du;Kwon, Soon-Ik;Park, Woo-Kyun;Lee, Deog-Bae;Kim, Jeong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Livestock manures have a potential to be a valuable resource with an efficient treatment. In Korea, 42 million tons of livestock manure were generated in 2008, and 84 % of them were used for compost and liquid fertilizer production. Recently recycling of livestock manure for biogas production through anaerobic digestion is increasing, but its utilization in agriculture is still uncertified. In this study, there was applied co-digestate to the paddy for rice cultivation based on N supplement. Co-digestate was fertilizer fermented with pig slurry and food waste combined with the ratio of 70:30(v:v) in its volumetric basis. For assessing the safety of co-digestate, it was monitored the contents of co-digestate for seasonal variation, resulted in no potential harm to the soil and plant by heavy metals. The results showed that soil applied with co-digestate was increased in exchangeable potassium, copper and zinc mainly due to the high rate of pig slurry in co-digestate applied. Considering high salt content due to the combination with food waste, strict quality assurances are needed for safe application to arable land though it has valuable fertilizer nutrient. Leachate after treatment showed that the concentration of nitrate nitrogen washed out within two weeks. Considering the salt accumulation results in soil, it is highly recommended that the application rate of co-digestate should not exceed the crop fertilization rate based on N supplement. With these results, it was concluded that co-digestate could be used as an alternative fertilizer for chemical fertilizer. More study is needed for the long-term effects of co-digestate application on the soil and water environment.

Studies on the Grassland Management in Late-Autumn and Early-Spring V. Effect of application levels NPK fertilizer at pasture establishment on witer survival, early spring growth and yield of grasses (월동전후 초지관리에 관한 연구 V. 초지조성시 3요소 시비수준이 목초의 월동과 이른 봄 생육 및 수량에 미치는 영향)

  • Seo, Sung;Park, Moon-Soo;Han, Young-Choon;Lee, Joung-Kyong;Jo, Mu-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.3
    • /
    • pp.141-147
    • /
    • 1989
  • This experiment was carried out to determine the effects of 13 different application levels of nitrogen(N), phosphorous($P_2O_5$) and potassium($K_2O$) fertilizer at pasture establishment on the winter survival, early spring growth and dry matter(DM) yield, and contents of crude protein(CP) and carbohydrate resewes(CH0-R) of grasses in Suwon from September, 1987 to June, 1988. Winter survival of grasses was high (ca. 90 %) in the plots of N 80 kg, N 120 kg and $K_2O$ application, regardless of $P_2O_5$, while those in zero-N and zero-NPK plots were low as 76 % and 64 %, respectively. Close relationships were observed between winter survival and N & $K_2O$ fertilizer. Early spring growth was vigorous in N-fertilized plots. Heading rate at the first harvest was 50-70 % in all N-plots, regardless of $P_2O_5$ and $K_2O$, while those in zero-N and zero-NPK plots were very low as 20-26 % and 15-18 %,respectively. The DM yield of first harvest was higher in the plots of N 80 kg $ha^{-1}$, regardless of $P_2O_5$ and $K_2O$ levels, and those in zero-N and zero-NPK plots were very low (P < 0.05). The regrowth yleld was not significantly affected by fertilizer levels. The CP content was increased with increasing N level, but CHO-K contents (35-39 %)was not affected by fertilizer levels.Winter survival, early spring growth, DM yield and CP content were significantly influenced by N fertilizer at pasture establishment, regardless of $P_2O_5$ and $K_2O$ application. In this experiment, the compensation effect for spring yield was observed with more N application than usual in next early spring when deficient amount of fertilizer (especially N) was applicated at pasture establishment. Also the optimum application levels of N, $P_2O_5$ and $K_2O$ fertilizer could be recommended as 80, 200 and 70 kg $ha^{-1}$ in new establishing pasture, respectively.

  • PDF

Variation in Spikelet Number under Different Nitrogen Levels and Shading Treatments during Panicle Formation Stage of Rice (질소 시비량, 분시방법 및 유수 형성기의 차광처리에 따른 벼의 영화수 변이)

  • 이변우;박동하;최일선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • This study was conducted in order to elucidate the effects of nitrogen level and split application method, and shading treatment during reproductive stage on sink formation. Japonica variety Choocheongbyeo and Hwaseongbyeo and indica$\times$japonica cross type variety Nampoongbyeo were used. Five levels (6 to 30 kg/10a at 6 kg/10a interval) of nitrogen fertilization, and two split application methods (50-25-25% and 30-30-40% as basaltillering-panicle fertilizer) for each nitrogen treatment were applied. In addition shading treatments (shading rate, 65%) were performed for N 12 kg/10a and 24 kg/10a plot. Shading were applied for 30 days from panicle initiation to heading, 15 days from panicle initiation and 15days before heading. Panicle per square meter, and primary rachis branches per panicle and differentiated number of secondary branch per panicle increased according as applied nitrogen amount increased up to 18 to 24 kg/10a, and there was no significant difference between two nitrogen application methods. Primary rachis branch and secondary branch per square meter also increased according as the amount of applied nitrogen increase up to 18 to 24 kg/10a, and there was no significant difference between nitrogen application methods. Panicle per square meter and primary rachis branch per panicle were significantly decreased due to shading treatments only in Choochengbyeo. In all varieties, shading reduced secondary rachis branch per panicle significantly and the reduction was greatest in 30 days shading during reproductive stage. Spikelets per square meter increased according as the amount of applied nitrogen increases up to 18 to 24kg/10a, but showed no move increase above this nitrogen application level. Significant difference was not shown between nitrogen split methods. Spikelets per square meter also decreased significantly due to shading treatment during reproductive stage, showing the greatest reduction by 30 days shading during reproductive stage, and the least by 15 days shading during booting stage. The variation of spikelets per square meter was influenced greatest by the variation of panicles per square meter and spikelets per secondary rachis branch.

Evaluation of Fertilization Effect of Slow-Release Complex Fertilizer on Pepper Cultivation (원예용 완효성 복합비료의 고추에 대한 시비효과 평가)

  • Lee, Chang-Hoon;Lee, Hyub;Ha, Byung-Hyun;Kang, Chang-Sun;Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.228-232
    • /
    • 2007
  • Slow-release fertilizers (SRF) have been used to reduce nutrient loss through increasing fertilizer efficiency and to save labor. Several SRFs were developed for rice plant in Korea, but there is few for horticultural crop plants. Two slow-release complex fertilizers, 100T and 150T, which made for controlling nitrogen release time up to 100 and 150 days, respectively, were selected for the incubation test cto evaluate nitrogen (N) release rate in soil. The N of urea selected as the control was completely released within a week after application. Sixty three and 53% of total N were released from 110T and 150T of slow release fertilizers within 8th weeks after application, respectively. For pepper cultivation CF110 and CF150, new slow-release complex fertilizer, were made of mixing 40% of conventional fertilizer and 60% of 110T and 150T, respectively, based on the amount of recommended fertilizer for pepper cultivation $(N-P_2O_5-K_2O=190-112-149\;kg\;ha^{-1})$, and were totally applied before pepper transplanting in the field as the basal fertilizer. Inorganic N $(NH_4^+-N+NO_3^--N)$ concentration in soil was higher in the CF110 treatment than in the control (NPK) at all period of pepper cultivation. In the CF150 treatment concentration of inorganic N in soil was low compared to control up to 8th weeks after transplanting. However, there was no difference in plant height and nutrient content of pepper leave between CF110 treatment and the control. In comparison, plant height was significantly lower in CF150 than the control and CF110 treatments. Around 4% of fresh pepper yield was increased in CF110 compared to the control, but it was decreased to about 2% by CF150 treatment. Conclusively, CF110 form could be recommended as a slow release fertilizer for pepper cultivation.

Effect of Consecutive Application of Organic Matter on Soil Chemical Properties and Enzyme Activity in Potato Cultivation Soil (유기물 연용이 감자재배 비화산회토양의 화학성과 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Seo, Hyeong-Ho;Choi, Kyung-San;Kim, Seong-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.801-807
    • /
    • 2011
  • This study was carried out to evaluate effect of consecutive application of organic matter on soil chemical properties and dehydrogenase, acid phosphatase activity in non-volcanic ash soil during three cropping season. Organic matter mixture and organic fertilizer (MOF, $2,000kg\;10a^{-1}$), food waste compost (FWC, $2,000kg\;10a^{-1}$), and pig manure compost (PMC, 2,000, 4,000, and $6,000kg\;10a^{-1}$) were applied for each cropping season. Soil pH values were increased after three cropping season in all treatment. In the soils of the increased application of PMC, soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), and heavy metal (Zn and Cu) contents were increased. In addition, Soil dehydrogenase activity was significantly increased in proportions to PMC application rate and cropping season during potato cultivation period. The activity was two times higher in PMC ($4,000kg\;10a^{-1}$) than control after the third cropping season. Soil dehydrogenase activity was in order of PMC>FWC>NPK+PMC>MOF. Acid phosphatase activity was higher in PMC ($6,000kg\;10a^{-1}$) than other treatment. Soil Zn content and dehydrogenase activity showed linearly correlation, which were MOF ($R^2$=0.427), FWC ($R^2$=0.427) and PMC ($R^2$=0.411, p<0.01), respectively. This study demonstrated that soil chemical properties and enzyme activity could be affected greatly by consecutive application of different organic matter in the potato cultivation field.

Response of Grain Protein Content to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Plant Nitrogen Status of Rice (벼 유수분화기 생육 및 질소영양 상태에 따른 쌀 단백질함량의 수비 질소 반응)

  • Kim, Min-Ho;Lee, Kyu-Jong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.104-111
    • /
    • 2007
  • As protein content of milled rice, generally used as a benchmark for rice eating quality, is greatly affected by N fertilization and nutrition status of rice plant, understanding its response to nitrogen rate and plant nitrogen status at different growth stage is important for recommending N fertilizer management for high quality rice production. The responses of milled-rice protein content were compared and quantified under various combinations of basal+tillering and panicle N application levels in 2001 and 2002. Protein content of milled rice was ranged from 6 to 9%, increasing significantly with increasing basal+tillering and panicle N rates. However, milled rice protein content was raised much greater by panicle N than by basal+tillering N fertilization. Even though basal+tillering N increased up to 20 kg/ha, protein content of milled rice was observed less than 7% in case that panicle N was applied below 1.8 kg/10a. Regression analysis revealed that nitrogen accumulated until harvest was partitioned with almost constant rates of 58.3% and 46.5% to panicle and milled rice, respectively. The partitioning rates was slightly but not significantly different between experimental years. Protein content of milled rice showed linear and quadratic responses to the shoot N accumulation until panicle initiation stage (PIS) ant shoot nitrogen accumulation from PIS to harvest, respectively. The increment of milled-rice protein content per unit N increase was much greater in shoot N accumulation from PIS to harvest than in that until PIS. Regardless of shoot N accumulation until PIS upto 8 kg/10a, protein content of milled rice was lower than 7% and ranged from 6.5 to 7.5% in case that shoot N accumulation from PIS to harvest was below 3.0 kg/10a and below 6.0 kg/10a respectively. It would be concluded that even under the same N accumulation until harvest milled rice protein content could be different according to the N fertilizer management and weather condition especially during ripening, providing rooms for controlling protein content by N fertilizer management without damage to grain yield.