• Title/Summary/Keyword: nitrogen fertilizer

Search Result 1,659, Processing Time 0.026 seconds

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Nutrient Load Balance in Large-Scale Paddy Fields during Rice Cultivation (경지 정리된 광역 논에서 영양물질 수지와 배출 특성)

  • Kim, Min-Kyeong;Roh, Kee-An;Lee, Nam-Jong;Seo, Myung-Chul;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.164-171
    • /
    • 2005
  • The aim of this study was to evaluate the load of nutrient from paddy fields. Water management practices that can reduce eutrophication and meet water quality requirements will also be addressed. Continuous monitoring from May to September in 2002 and 2003 was conducted for water quantification and qualification at the intensive paddy fields in Icheon, Gyunggi province of Korea. Water balance and concentration variation of nitrogen and phosphorus in the water were independently compared for water quality assessment at each rice cultivation period. Rice land preparation and transplanting periods usually marked the highest water demand when compared to other periods of cultivation. Overall, a greater net irrigation ratio was observed during the transplanting period in 2002 (92.3%) and 2003 (87.2%). The measured total N loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 9.9, 41.6, 22.1, and $5.5kg\;ha^{-1}$ for 2002 and 15.8, 55.4, 17.3, and $7.5kg\;ha^{-1}$ for 2003, respectively. The measured total P loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 2.1, 13.0, 3.6, and $1.8kg\;ha^{-1}$ for 2002 and 1.6, 15.0, 5.0, and $1.2kg\;ha^{-1}$ for 2003, respectively. Daily nutrient load followed the pattern of surface drainage water, but this pattern was changed by rainfall events. The nutrient load in drainage water depends on rainfall and surface drainage water amount from the paddy fields. Interestingly, the load of total N and total P output was smaller than the input load due to the natural infiltration that Occurred during the rice cultivation period. It is concluded that the paddy fields have a beneficial effect on the ecosystem and can reduce eutrophication in the water.

Nutrient Contents of Bracken (Pteridium aquilinum L.) and Soil Chemical Properties of Its Habitat in the Coastal Area (남서해안 고사리 생육지의 토양화학적 특성과 고사리식물체의 무기성분 함량)

  • Lee, Soo-Young;Park, Kang-Yong;Park, Yang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.631-636
    • /
    • 2010
  • One experiment was carried out to investigate the soil chemical properties of bracken growth and the inorganic element contents of plant. To the results of soil analysis in native bracken (Pteridium aquilinum L.) growth, soil pH was 5.2, organic matter was 19 g $kg^{-1}$ and available phosphate was 20 mg $kg^{-1}$, and exchangeable potassium, calcium, magnesium were 0.32, 2.0 and 1.3 $cmol_c\;kg^{-1}$, respectively. In the bracken cultivation soil, pH was 5.7, organic matter was 13 g $kg^{-1}$ and available phosphate 367 mg $kg^{-1}$, and exchangeable potassium, calcium and magnesium were 0.81, 4.0 and 1.4 $cmol_c\;kg^{-1}$, respectively. The soil pH, available phosphate and exchangeable calcium were much lower in bracken native soil than those of cultivation soil, while organic matter was a little higher in native soil than that of cultivation soil. In native bracken plants, three major elements of nitrogen, phosphorus and potassium, were 4.40, 0.55 and 3.40%, calcium and magnesium were 0.22 and 0.32%, and microelements of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and boron were 126, 210, 23, 75 and 11 mg $kg^{-1}$, respectively. In cultivation bracken, three major elements of nitrogen, phosphorus and potassium, were 5.50, 0.73 and 3.55%, calcium and magnesium were 0.17 and 0.28%, and microelement contents of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and boron (B) were 120, 252, 19, 72 and 20 mg $kg^{-1}$, respectively.

Studies on the Nutritional Diagnosis of the Soil and the Plant Leaves in Sweet Persimmon Cultivation Area of Jinyoung (단감 지대(地帶) 토양 및 과수(果樹)의 영양상태(營養狀態)에 관한 조사연구)

  • Ha, Ho-Sung;Park, Dou-Byung;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.4
    • /
    • pp.258-269
    • /
    • 1982
  • The nutritional status of fruit leaves of sweet persimmon and soil conditions were observed in the fifty five blocks of fruit farms of sweet persimmon in Gimhae, Gyeong-nam area. 1. The soil of fruit farm was composed of more than 20% of gravel in the most part of the fruit farms. 2. The strong acidity was observed in the soil of young fruit farms but the acidity of the farm soils was improved to week acid with increase of age of fruit trees. 3. The great variation in the content of available phosphate were observed in the soil from different fruit farm blocks and the lime content were relatively low in the most of the farm soils. 4. The contents of nitrogen, phosphate and potassium in leaves of sweet persimmon collected in July and October were lower than those collected in May but reverse tendency was observed in the content of calcium, magnesium and sodium. 5. The content of boron in leaves collected in May was similar to that collected in July but extremely high content of boron was observed in the loaves collected in October, harvesting period of sweet persimmon. 6. The contents of iron and manganese in the leaves of sweet persimmon were observed to be relatively high compared to the content in the leaves of other fruit trees. 7. The relatively great variation in such inorganic components as iron, copper and boron was observed in the fruit leaves of sweet persimmon according to the different fruit farm blocks. 8. The ages of fruit trees didn't have an effect on the content of inorganic components in the fruit leaves except the content of nitrogen which was decreased with the increase of the ages of fruit trees.

  • PDF

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

Characteristics of Nutrient Uptake and Stubble Regrowth of Grain Sorghum in Plastic Film House (비닐하우스 재배 수수의 그루터기 재생 및 양분흡수 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Chang-Yeong;Hwang, Jae-Bog;Choi, Young-Dae;Jeon, Seung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.992-997
    • /
    • 2012
  • This study was conducted to get the basic information for absorb enhancement of accumulated soil nutrients in plastic film house. The grain sorghum (Sorghum bicolor L.) was sowing in plastic film house which soil nutrient accumulated moderately and was cutting at major growth period of sorghum. We were analyzed the regrowth pattern, biomass due to cutting time and amount of plant nutrient of grain sorghum. The obtained results were as follows. The heading date after cutting of sorghum in plastic film house was came to about 35 days. The accumulated of plant height were the longest as 379.4 cm in cutting at milk stage. The total biomass of sorghum in cutting at heading stage was 1.73 ton $10a^{-1}$ in cutting at heading stage. The high grain yields were produced with non-cutting and cutting at 10 leaves stage as 75~113 kg $10a^{-1}$ but the lowest grain yields were the cutting plots at booting stage as below 24 kg $10a^{-1}$. The content of nutrient in sorghum plant was low as progress of growth. The concentrations in aboveground sorghum due to plant parts was in order to leaves > panicle > stalk. The nitrogen content of sorghum was 0.6~0.7% in stalk, 1.5~1.6% in panicle and 1.8~2.3% in leaves. The amount of nutrient absorbed in sorghum was 4.2 kg $10a^{-1}$ in nitrogen, 1.7 kg $10a^{-1}$ phosphorus and 7.7 kg $10a^{-1}$ in potassium and the absorbing different by cutting time in order to booting > non-cutting > panicle formation ${\geq}$ milk ripe > 10 leaves stage.

Effect of the Application Levels of pig Slurry on the Productivity of Rye, Nutritive Value and Soil Fertility in Paddy-land (답작지대에서 돈분액비가 호밀의 생산성, 사료가치 및 지력증진에 미치는 영향)

  • Yook, Wan-Bang;Choik, Ki-Chun;Yoon, Chang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • This study was conducted on paddy-land at Kimje, ChunBuk in Korea from Nov. 1999 to Nov. 2002. The aim of this study was to investigate the effect of pig slurry (PS) on dry matter (DM) yield, N yield and nutritive value of rye, and soil total nitrogen (TN), Phosphorus (P) and organic matter (OM) content. This experiment was consisted of 4 plot (chemical fertilizer; N: 100/100, $P_2O_5: 150,\;K_2O: 150$ kg/ha; PS $100\%$ treatment, PS $200\%$ treatment and PS $100\%$ treatment with half of CF). 1. DM yields of rye revealed that there was an increase in order; PS $100\%$ treatment with half of chemical fertilizer (CF) > PS $200\%$ treatment > full of CF treatment > PS $100\%$ treatment. 2. Crude protein (CP) content was the highest with PS $200\%$ treatment ($10.53\%$) and followed by PS $100\%$ treatment with half of CF and full of CF treatment and the lowest with PS $100\%$ treatment. 3. The contents of NDF and TDN were hardly influenced by PS and CF 4. N yields of rye revealed that there was an increase in order; PS $200\%$ treatment > PS $100\%$ treatment with half of CF > full of CF treatment > PS $100\%$ treatment. 5. The contents of TN and OM were not influenced by the application levels of PS. however, The TN content increased by the application of PS, as increasing the application period 6. P content of the soil was not affected by the application levels of PS during the experimental period.

Characteristics of Indigenous Rhizobium to Korean Soils -II. Symbiotic and Serological Characteristics of Bradyrhizobium japonicum Naturalized in Yeongnam Soils (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구 -II. 영남지역(嶺南地域) 토착(土着) Bradyrhizobium japonicum의 공생(共生) 및 혈청학적(血淸學的) 특성(特性))

  • Kang, Ui-Gum;Jung, Yeun-Tae;Somasegaran, Padma;Hoben, H.;Bohlool, B. Ben
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • Thirty Bradyrhizobium japonicum isolates (10 strains per each soil) from 1 uncultivated [Sangnam(Soil 1), Milyang]- and 2 cultivated [Dong(Soil 2)and Chinbuk(Soil 3), Changweon] upland soils in Yeongnam area were evaluated on their symbiotic effectiveness to soybean [Glycin max (L.)] cv. Korean Jangbaekkong and American Clark and examined on their serological diversity. The results obtained were summarized as follows : 1. On symbiotic effectiveness of B. japonicum with plant genotypes, isolates showed a relatively high value of nodule mass in Jangbaekkong cv. and of shoot dry weight and total nitrogen in Clark cv. demonstrating the order of Soil 1> Soil 2> Soil 3 isolates. 2. Among 30 B. japonicum isolates, YCK 141 showed the best effectiveness on mean nitrogen fixation of two cultivars. 3. Thirty indigenous B. japonicum showed 6 types of serological diversities in the immunoblot analysis which were present in various proportions at Soil 2(5) and Soil 3(5) except Soil 1 where all isolates fell into the YCK 117 serogroup. And their distribution order was serotype YCK 117( 12 strains) > USDA 1l0(5strains), USDA 123(5 strains) > YCK 150(4 strains) > YCK 141(3 strains) > YCK 226(1 strain). 4. Especially, 10 isolates from Soil 1, an uncultivated orchard, showed a very homologous pattern in not only effectiveness but serological distribution. It seemed to indicate that the isolates were typically affected by numerous physical and environmental factors of the soil.

  • PDF

Effect of Root Zone Temperature on the Growth and the Leaf Mineral Contents of Apple(Malus domestica Borkh) Trees (근권(根圈) 온도환경(溫度環境)이 사과나무의 생육(生育) 및 엽중(葉中) 무기성분함량(無機成分含量)에 미치는 영향)

  • Park, Jin-Myeon;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.378-384
    • /
    • 1996
  • This study was conducted to investigate the influence of root zone temperature on the growth of shoot and root and the mineral contents in leaf of 'Fuji/M26' apple tree. Shoot growth and enlargement of trunk girth increased linearly with increasing root zone temperature. Fresh and dry weight of root reached maximum at $35^{\circ}C$. Water content of root increased with rising root zone temperature. The chlorophyll content of leaves showed insignificant difference with root zone temperature. Leaf water potential was high at $35^{\circ}C$ at 15 day after treatment but 60 day after treatment this was decreased. The nitrogen content of the leaves was not different by root zone temperature whereas the phosphorus content of the leaves was increased at $30^{\circ}C$ in 1993 and at $25^{\circ}C$ in 1994. The potassium content of the leaves reached a maximum at $30^{\circ}C$ in 1993 and $25^{\circ}C$ in 1994. In 1994 the calcium content of the leaves was increased with rising root zone temperature and with lengthening duration of treatment but no such differences were found in 1993. The magnesium content of the leaves was highest at $25^{\circ}C$ in 1993 and at $20^{\circ}C$ in 1994. The nitrogen and potassium content of the roots were increased linearly with root zone temperature in 1993 and 1994 and the magnesium and phosphorus content of the roots were high at $35^{\circ}C$ in 1994 but no such differences were found in the calcium content of the roots.

  • PDF