• Title/Summary/Keyword: nitrogen absorption

Search Result 447, Processing Time 0.027 seconds

Impacts of Ultraviolet-B Radiation on Rice-Field Cyanobacteria

  • Sinha, Rajeshwar P.;Hader, Donat-P.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.439-441
    • /
    • 2002
  • Cyanobacteria are the dominant micro flora in rice-fields, contributing significantly to fertility as a natural biofertilizer. Recent studies show a continuous depletion of the stratospheric ozone layer, and the consequent increase in solar UV-B (280-315 nm) radiation reaching the Earth's surface. UV-B radiation causes reduction in growth, survival, protein content, heterocyst frequency and fixation of carbon and nitrogen in many cyanobacteria. UV -B induced bleaching of pigments, disassembly of phycobilisomal complexes, thymine dimer formation and alterations in membrane permeability have also been encounterd in a number of cyanobacteria. However, certain cyanobacteria produce photoprotective compounds such as water soluble colorless mycosporine-like amino acids (MAAs) and the lipid soluble yellow-brown colored sheath pigment, scytonemin, to counteract the damaging effects of UV-B. Cyanobacteria, such as Anabaena sp., Nostoc commune, Scytonema sp. and Lyngbya sp. were isolated from rice fields and other habitats in India and screened for the presence of photoprotective compounds. A circadian induction of the synthesis of MAAs by UV -B was noted in a number of cyanobacteria. Polychromatic action spectra for the induction of MAAs in Anabaena sp. and Nostoc commune also show the induction to be UV-B dependent peaking at 290 nm. Another photoprotective compound, scytonemin, with an absorption maximum at 386 nm (also absorbs at 300, 278, 252 and 212 nm), was detected in many cyanobacteria. In conclusion, a particular cyanobacterium having photoprotective compounds may be a potent candidate as biofertilizer for crop plants.

  • PDF

MODIFICATION OF INITIALLY GROWN BN LAYERS BY POST-N$^{+}$ IMPLANTATION

  • Byon, E-S.;Lee, S-H.;Lee, S-R.;Lee, K-H.;Tian, J.;Youn, J-H.;Sung, C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.351-355
    • /
    • 1999
  • BN films with a high content of cubic phase has been deposited by a variety of techniques. It is well known that c-BN films grow with a unique microstructure consisting of $sp^2$ and $sp^{3-}$ bonded layers. Because of existence of the initially grown $sp^{2-}$ /bonded layer, BN films are not adhesive to the substrates. In this study, post-N$^{+ }$ / implantation was applied to improve the adhesion of the films. A Monte Carlo program TAMIX was used to simulate this modification process. The simulation showed nitrogen concentration profile at $1200\AA$ in depth in case of 50keV -implantation energy. FTIR spectra of the $N^{+}$ implanted specimens demonstrated a strong change of absorption band at 1380 cm$^{ -1 }$The films were also investigated by HRTEM. From these results, it is concluded that the post ion implantation could be an effective technique which improves the adhesion between BN film and substrate.

  • PDF

Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials (금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계)

  • 김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2004
  • Nitrogen ion implantation and ion plating techniques were applied for improvement of the wear resistance of metallic implant materials. In this work, the wear dissolution behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The amounts of Cr and Ni ions worn-out from the specimens were Investigated using an electrothermal atomic absorption spectrometry. Furthermore, the Ti(Grade 2) disks were coated with TiN, ZrN and TiCN by use of low temperature arc vapor deposition and the wear resistance of the coating layers was compared with that of titanium. The chemical compositions of the nitrogen ion implanted and nitride coated layers were examined with a scanting auger electron spectroscopy. It wat observed that the metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. From the results obtained, it was shown that the nitrogen ion implanted zone obtained with 100 KeV ion energy was easily removed within 200,000 revolutions from a wear dissolution testing under a similar load condition when applied to artificial hip joint. The remarkable improvement in wear resistance weir confirmed by the nitrides coated Ti materials and the wear properties differ greatly according to the chemical composition of the coating layers. for specimens with the same coating thickness of about 3$\mu\textrm{m}$, TiCN coated Ti showed the highest wear resistance. However, after removing the coating layers, the wear rates of all nitrides coated Ti reverted to their normal rates of below 10,000 revolutions from Ti-disk-on-disk wear testing under the same load condition. From the results obtained, it is suggested that the insufficient depth of the 100 Kel N$\^$+/ ion implanted zone and of the nitrides coated layers of 3$\mu\textrm{m}$ are subject to restriction when used as frictional parts of load bearing implants.

Change in Nitrogen Compounds of Fermented Fodder for Sea Cucumber during Three Step Fermentation on Sludge (고형오물을 이용한 해삼용 3단 발효사료 제조 중 질소 성분 변화)

  • Lee, Su-Jeong;Ko, Yu-Jin;Kim, Eun-Ja;Kang, Seok-Jung;Ryu, Chung-Ho
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.147-155
    • /
    • 2016
  • This study presented a measure for turning by-products, released from land farming sites, into resources. The measure involved adding food by-products such as rice bran and nonfat soybean to the sludge, released from the eel farming sites, inoculating the lactic acid bacteria, Aspergillus oryzae, and Bacillus subtilis by step, fermenting them, and measuring the changed ingredients of the fermented fodder. The water content of the fermented fodder by the step of preparation was the first-step fermented product (14.6%) using the lactic acid bacteria, and the second and third-stage fermented product (33.0% and 34.0% respectively) using Aspergillus oryzae and Bacillus subtilis. The pH level was found to be 5.38 in the first-step fermented product due to the secretion of lactic acid caused by the lactic acid bacteria, and the pH level of the second and third-stage fermented products was 5.66 and 7.26, respectively, showing that the pH level increased. The phytic acid content was 0.126g/100g in the first-step fermented product, 0.004g/100g in the second-stage fermented product, and 0.093g/100g in the third-stage fermented product. The measurement of nitrogen content revealed that the amino nitrogen content was high with 1226.37mg% in the second-stage fermented product, and a little lower with 710.18mg% in the third-stage fermented product. The ammonium nitrogen content increased from 0.988mg/kg in the first-stage fermented product to 1.502mg/kg in the third-stage fermented product. Total nitrogen content increased to 2.78% in the first-stage fermented product, 4.08% in the second-stage fermented product, and 4.85% in the third-stage fermented product. As fermentation continued with the three microbes, the phytic acid decreased, and the protein decomposition rate increased. Also, due to the 3 step fermentation, the low-molecule nitrogen ingredient content increased, suggesting that the fodder was developed to offer high digestion and absorption.

Studies on Increasing the Efficiency of Nitrogen Nutrition (질소영양(窒素營養)의 효율증진(效率增進)에 관(關)한 연구(硏究))

  • Kwack, Pan-Ju
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.151-166
    • /
    • 1969
  • I. Fffects of nitrogen supplying level and culture condition on the top growth aod tubers formation of Ipomoea Batatas. 1) The low level nitrogen (A plot) 3 Milliequivalent per liter of nutrient solution stimulated tuber formation while the high level nitrogen ($B_1\;and\;B_2$ plot) of 10 milliequivalent per liter failed to form tuber though fibrous roots were seen much activated. The suppressive effect of nitrogen on tuber formation in presumed to result from the direct suppressive effect of nitrogen or a certain biocatalystic effect rather than from any indirect effect through the stimulation to growth of tops or the competition with carbohydrates. 2) The addition of milligram urea to nutrient solution stimulated the growth and increased fresh weight and dry weight of the aerial part while suppressed, a little, plant length. 3) The water culture method, which this experiment newly adopted, stimulated plant growth more than the gravel Culture method. And the treatment of low level nitrogen (A plot) in this water culture also saw a considerable degree of tuber formation, as in the case of gravel culture. 4) The foliar application of growth retardant B-nine suppressed the plant length only, with no other recognizable effect. II. Fffects of urea supplying level on the growth of IPOMOEA BATATAS. 1) The higher level of urea which was absorbed tby roots through nutrient solution suppressed top growth, such as plant length, number of leaves and fresh weight. And this can be attributed to the direct absorption of urea which was not ammonificated. 2) Although the higher level of nitrate nitrogen (B plot) made no tuber formation in previous experiment (Report-1), the higher level of urea nitrogen (A plot) made tuber formation possible in this experiment. The ratio of tuber to top was, however, less in higher level of urea than in lower level of urea, and the suppressing effect was larger on tuber than on top. 3) The foliar application of urea stimulated top growth while the higher level of urea absorbed by roots suppressed it, though the amounts of urea supplied in two experiments were same. Ratio of top to roots was larger in foliar application of urea (C plot) and less in root absorption of urea both of higher (B plot) and lower urea levels (A plot). III. Fffects of growth retardant etc. on the growth of IPOMOEA BATATAS in relation to urea application. 1) B-nine (N-dimethyl amino-succinamic acid) is recognized as a growth retardant, suppressed the plant length irrespective of urea levels. The treatment of gibberellin stimulated distinctly plant length, and the combined treatment of gibberellin and B-nine recovered completely the plant length which had been suppressed by B-nine. 2) B-nine increased fresh weight, especially, fresh weight of top both in lower and higher level of The degree of fresh weight increase varied according to concentrations of B-nine, of which the 0.15% of B-nine ($B_1$ plot) was the effective in higher level of urea. The effect of B-nine for increasing fresh weight was the largest in top next in tuber, and the least in fibrous roots. The ratio of fibrous roots to top was always decreased by B-nine application, which the ratio of tuber to top was contrary increased by B-nine in higher level of urea though decreased in lower level of urea. 3) Gibberellin treatment also increased fresh weight but the combined treatment ($B_3$+GA plot) of gibberellin and B-nine was even more effective than any of single treatments. Gibberellin and B-nine proved to be synergistic with fresh weight while reverse with plant length. 4) Considerable influences were abserved mainly in the length of plants and their fresh weight after B-nine treatment. So that B-nine may be reguraded as a metabolic controller rather than as an antimetabolite. 5) The surpressed growth of plants cause by higher level of urea was normalized by B-nine treatment. This fact suggested a further study on the applicability for practical use.

  • PDF

The Surface Distribution of Dissolved Gases in the Southwestern East Sea: Comparison of the Primary Production and CO2 Absorption in Summer between Coastal Areas and the Ulleung Basin (동해 남서부해역의 표층 용존 기체 분포: 여름철 연안과 울릉분지의 일차생산력과 CO2 흡수 비교)

  • LEE, INHEE;HAHM, DOSHIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2021
  • The global coastal region is considered as a sink for atmospheric CO2. Since most of the studies in the East Sea focused on the Ulleung Basin, the importance of coastal region for carbon cycle has been overlooked. In this study, we compared the biological pump and CO2 absorption between the Ulleung Basin and coastal region by surface measurements of biological O2 supersaturation (𝚫O2/Ar) and partial pressure of CO2 (fCO2). Cold and less saline waters in the coastal regions were in contrast with a warm and saline water in the Ulleung Basin. The coastal waters near Samcheok and Pohang showed higher fluorescence, 𝚫O2/Ar, and lower fCO2 than those in the Ulleung Basin, indicating higher primary production and CO2 absorption in the areas. The average net community production estimated by 𝚫O2/Ar were 19 ± 6 and 60 ± 9 mmol O2 m-2d-1 in the Samcheok and Pohang, respectively, 2-7 times higher than that of 8 ± 4 mmol O2 m-2d-1 in the Ulleung Basin. Similarly, the average CO2 flux between the seawater and atmosphere were -17.1 ± 8.9 and -25.8 ± 13.2 mmol C m-2d-1 in the Samcheok and Pohang, respectively, 4-5 times higher than that of -4.7 ± 2.5 mmol C m-2d-1 in the Ulleung Basin. In the Samcheok and Pohang, degrees of N2 saturation were lower by 3% than that the ambient waters, suggesting the possibility of nitrogen fixation by primary producers.

Effect of Fertilizer and Organic Matter Level on Marketable Tuber Production in Chinese Yam (Dioscorea opposita) (마(산약) 생산을 위한 시비법 개선연구)

  • Shin, Jong-Hee;Kim, Sang-Kuk;Kang, Dong-Kyoon;Park, Sang-Zo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.144-150
    • /
    • 2014
  • Yams (Dioscorea spp), which are edible or medicinal tuber crops, are a important crop in South Korea. Yams require a high level of soil fertility. The various cultural practices such as fertilizing and plowing were tested for marketable tuber production in Chinese yam (Dioscorea opposita). Tuber yield was also affected by organic matters in soil. Application higher level of organic matters result in increased each tuber weight and tuber yield per unit area. The nutrient absorption quantity of the plant such as nitrogen, phosphoric acid, calcium and potassium was increased from 100~120 days after planting, which time to begin tuber enlargement. The tuber yield was increased when the fertilization increased in quantity. Total yield and marketable ratio were the highest in 31~32 kg/10a of nitrogen fertilizer. From above result, income become larger with increase of marketable yield and quality improvement at 63% (27 kg/10a) level of conventional N fertilization (43 kg/10a). The tuber yield was not significantly different between with in various application level of potash fertilizer. Tuber size and weight decreased accordingly to decreased fertilizing level, so the rates of small tubers increased greatly at cultivation without chemical fertilizer. In considering the accumulation rates of allantoin in Chinese yam tubers, the apt harvest season was after October. The allantoin quantity of it was not influenced with nitrogen fertilizing. Moreover it was advantageous with decrease of chemical fertilizer and appropriate fertilizing in soil environment protection. Commercial tuber's number and yield were increased in trenching before planting with trencher compared with rotavating with tractor.

A Study on Productivity and Quality Characteristics of Wood Pellets by Larix Kaemferi Carr Sawdust with Adding Vegetable Oil and Ozonized Vegetable Oil (식물유 및 오존산화 식물유를 첨가한 낙엽송 목재펠릿의 생산성 및 품질특성에 관한 연구)

  • Lee, Eung-Su;Kang, Chan-Young;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.359-369
    • /
    • 2011
  • The study was carried out to investigate the quality characteristics of pellets manufactured with adding soybean oil, waste soybean oil, ozonized soybean oil and ozonized waste soybean oil to Larix kaemferi Carr sawdust. The characteristics of pellet included moisture contents, heating value, ash contents, apparent densities, durabilities, absorption ratio and elementary analysis. Moisture contents were shown 7.66~9.48% which satisfied the first grade (less than 10%) of quality standard of wood pellets announced by Korea Forest Research Institute. The heating value of the manufactured wood pellets in this study exceeded the first grade of quality standard (more than 4,300 kcal/kg) and it appeared that the pellets manufactured with adding oils and ozonized oils had more heating value than the control pellets. Ash contents 0.34~0.42% also passed the first grade (less than 0.7%) of quality standard and apparent densities were adequate for the first grade (640 kg/$m^3$) on the quality standard. Durabilities of the pellets manufactured with adding soybean oil and ozonized waste soybean oil were shown over the first grade (97.5 kg/$m^3$) of quality standard. In the general results of durabilities, the pellets manufactured with additives had better values than the control pellets. After 24 hours absorption ratio experiment, absorption ratio of pellets manufactured with additives also appeared much lower moisture absorption than the control pellets and they still had the same results after 5days absorption ratio experiment. Elementary analysis of the sulfur content was satisfied the first grade (less than 0.05%) of quality standard of wood pellets and the nitrogen content was also adequate for the first grade (less than 0.3%) of quality standard of wood pellets.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF

Growth and Nutrients Uptake as Affected by Ammonium sulfate and Urea in the Paddy Rice (황산암모니아 및 요소의 시용이 수도의 생육과 양분 흡수에 미치는 영향)

  • ;Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.391-418
    • /
    • 1983
  • Urea and ammonium sulfate without and with sulfur group, respectively, were compared with respect to their nutritive effects on the rice plants, Suweon 264 and Jinheung, under the nursery trial on the protected upland and lowland seedbed, the pot trials with their various combination ratios and with added sodium sulfate to urea and the trials on the paddy fields which have undergone urea and ammonium sulfate application for many years. The rice seedlings fertilized with ammonium sulfate surpassed those with urea in growth performance and nutrients absorption of the rice seedlings at nursery period. Such stimulating effect of ammonium sulfate on the growth and nutrients uptake was more remarkable under the upland nursery than under the lowland one. The pot trial with the various combination ratios of urea and ammonium sulfate revealed that the chlorophyll content in leaf blade increased with the increment of sulfate ratio in the combination and the sole application of urea caused the chlorosis of leaf which was more conspicuous in Suweon 264 than in Jinheung. Fertilized with the same active ingradient amount of nitrogen, the rice plants supplied with ammonium sulfate surpassed those with urea in the chlorophyll content consistently under the nursery, the pot and the paddy field trials. The photosynthesis of flag leaf at heading stage increased with the combination rate of ammonium sulfate in the pot trial. The sulfur applicated as supplementary element of nitrogen in the nursery, the pot and the field trials were observed to be in positive relationship to the nitrogen and potassium content, but to be in negative correlation to the calcium content. The sulfur content in the rice plants was higher at early growth stage and decreased with the advance in growth stage. The nitrogen content also showed a similiar tendency to the sulfur content, and the N/S ratio was higher at early growth stage than at later one. The N/S ratio was negatively correlated with the chlorophyll content. In the field experiment, ammonium sulfate surpassed urea in the number of productive tiller, dry matter production and unhulled rice yields, but much stimulating effect of ammonium sulfate on the grain production was shown to be less effective than that on the straw production. The nitrogen and major nutrients content in the rice straw at harvest were higher in the paddy field with long-term ammonium sulfate application than in that with long-term urea application, suggesting that the former might have greater potentiality in nutrients supply than the latter.

  • PDF