• Title/Summary/Keyword: nitrobenzene

Search Result 124, Processing Time 0.015 seconds

Optimizing Nitrobenzene Synthesis Catalyzed by Sulfated Silica (SO4/SiO2) through Response Surface Methodological Approach

  • Aan Sabilladin;Aldino Javier Saviola;Karna Wijaya;Aulia Sukma Hutama;Mokhammad Fajar Pradipta;Wahyu Dita Saputri;Hilda Ismail;Budhijanto Budhijanto;Won-Chun Oh;Balasubramani Ravindran
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.341-354
    • /
    • 2024
  • Today, the principles of green chemistry are being fundamentally applied in the chemical industry, such as the nitrobenzene industry, which is an essential intermediate for various commercial products. Research on the application of response surface methodology (RSM) to optimize nitrobenzene synthesis was conducted using a sulfated silica (SO4/SiO2) catalyst and batch microwave reactor. The nitrobenzene synthesis process was carried out according to RSM using a central composite design (CCD) design for three independent variables, consisting of sulfuric acid concentration on the silica (%), stirring time (min), and reaction temperature (℃), and the response variable of nitrobenzene yield (%). The results showed that a three-factorial design using the response surface method could determine the optimum conditions for obtaining nitrobenzene products in a batch microwave reactor. The optimum condition for a nitrobenzene yield of 63.38 % can be obtained at a sulfuric acid concentration on the silica of 91.20 %, stirring time of 140.45 min, and reaction temperature of 58.14 ℃. From the 20 experiments conducted, the SO4/SiO2 catalyst showed a selectivity of 100 %, which means that this solid acid catalyst can potentially work well in converting benzene to nitrobenzene.

Nanosulfated Silica as a Potential Heterogeneous Catalyst for the Synthesis of Nitrobenzene

  • Khairul Amri;Aan Sabilladin;Remi Ayu Pratika;Ari Sudarmanto;Hilda Ismail;Budhijanto;Mega Fia Lestari;Won-Chun Oh;Karna Wijaya
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.265-272
    • /
    • 2023
  • In this study, the synthesis of nitrobenzene was carried out using sulfated silica catalyst. The study delved into H2SO4/SiO2 as a solid acid catalyst and the effect of its weight variation, as well as the use of a microwave batch reactor in the synthesis of nitrobenzene. SiO2 was prepared using the sol-gel method from TEOS precursor. The formed gel was then refluxed with methanol and calcined at a temperature of 600 ℃. SiO2 with a 200-mesh size was impregnated with 98 % H2SO4 by mixing for 1 h. The resulting 33 % (w/w) H2SO4/SiO2 catalyst was separated by centrifugation, dried, and calcined at 600 ℃. The catalyst was then used as a solid acid catalyst in the synthesis of nitrobenzene. The weights of catalyst used were 0.5; 1; and 1.5 grams. The synthesis of nitrobenzene was carried out with a 1:3 ratio of benzene to nitric acid in a microwave batch reactor at 60 ℃ for 5 h. The resulting nitrobenzene liquid was analyzed using GC-MS to determine the selectivity of the catalyst. Likewise, the use of a microwave batch reactor was found to be appropriate and successful for the synthesis of nitrobenzene. The thermal energy produced by the microwave batch reactor was efficient enough to be used for the nitration reaction. Reactivity and selectivity tests demonstrated that 1 g of H2SO4/SiO2 could generate an average benzene conversion of 40.33 %.

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene

  • Devaraji, Perumal;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.95-108
    • /
    • 2020
  • Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.

Interaction of Gallium Bromide with Hydrogen Bromide and Methyl Bromide in Nitrobenzene and in 1,2,4-Trichlorobenzene (니트로 벤젠 溶液 및 1,2,4-트리클로로 벤젠 溶液內에서의 브롬化갤륨과 브롬化水素 또는 브롬化 메칠과의 相互作用)

  • Choi, Sang-Up
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 1962
  • The solubilities of hydrogen bromide and methyl bromide in nitrobenzene and in 1,2,4-trichlorobenzene have been measured in the presence and absence of gallium bromide. When gallium bromide does not exist in the system, the solubilities of HBr and MeBr in nitrobenzene are greater than in 1,2,4-trichlorobenzene, indicating the greater basicity of nitrobenzene than 1,2,4-trichlorobenzene. When there exists gallium bromide in the system, the addition compounds, GaBr3·HBr and GaBr3·CH3Br, have been found to exist in solution. The addition compound of GaBr3·HBr is stable in nitrobenzene but unstable in 1,2,4-trichlorobenzene. On the other hand the addition compound of $GaBr_3{\cdot}CH_3Br$ is unstable in both solvents. All of these unstable addition compounds dissociate into components to large extents according to one of the following equilibria or both: $$GaBr_3{\cdot}RBr{\leftrightarrows}GaBr_3+RBr\;GaBr_3{\cdot}RBr{\leftrightarrows}1}2\;Ga_2Br_6+RBr$.$ where R denotes either hydrogen atom or methyl group.

  • PDF

A Study on the Solid-liquid Equilibria for Benzene+aniline, Benzene+nitrobenzene, p-xylene+cyclohexane (Benzene+aniline, benzene+nitrobenzene, p-xylene+cyclohexane계의 고액평형에 관한 연구)

  • Park, So-Jin;Paik, Seung-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.864-869
    • /
    • 1998
  • In this work, the solid-liquid equilibria (SLE) of some aromatic organic mixtures including benzene, widely used as an industrial solvent, were measured by static method using our own made experimental apparatus. The accuracy and reproducibility of apparatus were tested by comparing experimental results with literature values for 1-dodecanol+cyclohxane and benzene + p-xylene systems. The SLE for new binary systems of benzene+aniline, benzene+nitrobenzene, p-xylene+cyclohexane were measured afterwards and compared with the calculated values by modified UNIFAC(Dortmund) equation.

  • PDF

An Efficient Preparation of 4-Nitrosoaniline from the Reaction of Nitrobenzene with Alkali Metal Ureates

  • Park, Jaebum;Kim, Hyung Jin
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.251-256
    • /
    • 2016
  • This paper describes the synthesis of alkali metal salts of urea (ureates) and their application to the direct preparation of 4-nitrosoaniline from nitrobenzene via nucleophilic aromatic substitution of hydrogen. Sodium and potassium ureates were readily prepared from the reaction of urea with sodium hydride, metal methoxides, and metal hydroxides. The effect of ureates as nucleophiles on the conversion of nitrobenzene to 4-nitrosoaniline was investigated and compared with that of a urea-metal hydroxide mixture. It was found that the ureates were superior for producing 4-nitrosoaniline owing to their higher thermal stability of the ureate. The ureate obtained from the treatment of urea with sodium hydride gave the highest yield for the preparation of 4-nitrosoaniline. The ureates generated from the reaction of urea with metal hydroxide also gave high yields of 4-nitrosoaniline. Catalytic hydrogenation of 4-nitrosoaniline afforded polymer-grade 1,4-benzenediamine in quantitative yield.

Nitrobenzene Functionalized Hexahomotrioxacalix[3]arene

  • Kang, Jong-Min;Cheong, Na-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.995-997
    • /
    • 2002
  • The synthesis and characterization of a nitrobenzene modified hexahomotrioxacalix[3]arene 1 are described.When calixarene 1 bound with ammonium ions carrying fluorescence group, the fluorescence of ammonium ions were effectively quenched and chang e of emission intensity provided the information of ammonium ion binding events to the calixarene 1.

A Convenient Method for the Catalytic Hydrogenation of Aromatic Nitro Compounds to Aromatic Primary Amines (수소첨가 촉매 반응에 의한 니트로 화합물에서 방향족 1차 아민을 제조하는 편리한 방법)

  • Kim, Misoo;Lee, Hagyoung
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.3
    • /
    • pp.131-135
    • /
    • 1997
  • Aromatic primary amines were prepared by the catalytic hydrogenation of aromatic nitro compounds in a benzene solution over 50 mg of 10 % palladium on charcoal at a room temperature under 45 psi. This paper describes a study on the catalytic hydrogenation of nitrobenzene-$d_5$, $^{15}N$-labelled nitrobenzene, and 4'-nitrobenzo-15-crown-5, respectively. The infrared absorption spectra exhibited a characteristic N-H stretching vibrations at 3450 and $3350cm^{-1}$. The results suggest that the non-readily available aromatic amines would be commercially produced by catalytic hydrogenation because of its good yield and little by-product formation.

  • PDF

The Interaction of Gallium Bromide with Ethyl Bromide in Nitrobenzene and in 1,2,4-Trichlorobenzene (니트로벤젠溶液 및 1,2,4-트리클로로벤젠 溶液內에서의 브롬化갤륨과 브롬化에칠과의 相互作用)

  • Sang Up Choi
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.65-68
    • /
    • 1963
  • The solubility of ethyl bromide in nitrobenzene and in 1,2,4-trichlorobenzene has been measured at $19^{\circ}$ in the presence and absence of gallium bromide. When gallium bromide does not exist in the system, the solubility of ethyl bromide in nitrobenzene is greater than in 1,2,4-trichlorobenzene, indicating the stronger interaction of ethyl bromide with nitrobenzene than with 1,2,4-trichlorobenzene. When there exists gallium bromide in the system, an unstable 1: 1 complex, C2H5Br·GaBr3, of gallium bromide with ethyl bromide is formed in the solution. The 1: 1 complex in solution dissociates into the components to a large extent according to one of the following equilibria or both: $C_2H_5Br{\cdot}GaBr_3{\rightleftarrows}C_2H_5Br+GaBr_3$C_2H_5Br{\cdot}GaBr_3{\rightleftarrows}C_2H_5Br+1}2GaBr_3$$ The stability of the 1: 1 complex of ethyl bromide with gallium bromide is compared with that of the corresponding complex of methyl bromide.

  • PDF

Improving the Reactivity and Harmlessness of Recalcitrant Contaminants by Reduction-oxidation-linked Process (환원-산화 연계처리를 통한 니트로벤젠의 반응성 향상 및 무해화 연구)

  • Kwon, Hee-Won;Hwang, Inseong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1205-1211
    • /
    • 2020
  • In this study, the applicability of reduction-oxidation-linked treatment was evaluated for nitrobenzene and a by-product by analyzing the reaction kinetics. Nitrobenzene showed very low reactivity to persulfate that was activated using various methods. Nitrobenzene effectively reacted through the reduction process using Zero-Valent Iron (ZVI). However, aniline, a toxic substance, was produced as a by-product. Reduction-oxidation-linked treatment is a method that can allow the oxidative degradation of aniline after reducing nitrobenzene to aniline. The experimental results show improved reactivity and complete decomposition of the by-product. Improved reactivity and decomposition of the by-product were observed even under conditions in which the reduction-oxidation reaction was induced simultaneously. No activator was injected for persulfate activation in the process of reducing oxidant linkage, and the activation reaction was induced by ferrous iron eluted from the ZVI. This indicates that this method can be implemented relatively simply.