• 제목/요약/키워드: nitrite oxide

검색결과 269건 처리시간 0.025초

울금(Curcuma longa L.)의 생리활성 및 지질과산화 저해능에 미치는 영향 (Effects of Turmeric (Curcuma longa L.) Bioactivity Compounds and Lipid Peroxidation Inhibitory Action)

  • 오다영;김한수
    • 한국응용과학기술학회지
    • /
    • 제36권2호
    • /
    • pp.600-608
    • /
    • 2019
  • 울금(Curcuma longa L.)의 생리활성 및 지질과산화 저해능에 미치는 영향을 확인하고 기능성 식품 소재로 활용 가치를 검토하기 위하여 연구를 수행하였다. 총 카로티노이드(total carotenoid) 함량은 $1.581{\pm}0.005mg$ ${\beta}$-carotene equivalents (BCE)/g dry weight으로 관찰되었다. 70% 메탄올, chloroform:methanol (CM, 2:1, v/v), 에틸 아세테이트(ethyl acetate, EA) 3가지 용매를 사용한 추출 수율은 70% 메탄올(16.54%), CM (5.64%), EA (4.14%) 순으로 나타났다. 총 페놀 함량은 EA, CM 및 70% 메탄올에서 각각 106.287, 90.614 및 18.527 mg gallic acid equivalents (GAE)/g의 함량으로 나타났으며, 추출 용매 별 항산화능은 0.2, 0.4, 0.6, 0.8 mg/mL의 농도로 측정하였고, 양성대조구로 사용된 BHA (butylated hydroxyanisole) 및 trolox 보다는 낮은 항산화능을 보였다. Nitric oxide (NO) 라디칼 소거능은 70% 메탄올에서 28.65~48.43%, CM 18.86~55.10%, EA에서 15.68~56.25%로 관찰되었다. Nitrite ($NO_2$) 소거능은 70% 메탄올, CM 및 EA 순으로 나타나 EA 추출물에서 유의적인 차이를 보이며 강한 $NO_2$ 소거능을 나타내었다(p<0.05). ${\beta}$-carotene 탈색 저해능은 70% 메탄올, CM 및 EA에서 각각 1.64~23.79%, 6.99~41.16% 및 10.20~48.52%로 관찰되었다. 한편, 지질과산화 저해능은 70% 메탄올, CM 및 EA 추출물에서 높게 측정되었다.

Effect of ion Pairing on the Cellular Transport of Antisense Oligonucleotide

  • Song, Kyung;Kim, Kyoung-Mi;Kim, Jae-Baek;Ko, Geon-Il;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • 제20권5호
    • /
    • pp.438-442
    • /
    • 1997
  • Antisense oligonucleotide represents an interesting tool for selective inhibition of gene expression. However, their low efficiency of introduction within intact cells remains to be overcome. Antisense-$TGF{\beta}$ (25 mer) and antisense-$TGF{\beta}$ (18 mer) were used to study the cellular transport and biological function of antisense oligonucleotide in vitro. Since TGF and TNF play on important role in regulating the nitric oxide production from macrophages, the action of the above antisense oligonucleotides was easily monitored by the determination of nitrite. Poly-L-lysine, benzalkonium chloride and tetraphenylphosphonium chloride were used as polycations, which neutralize the negative charge of antisense oligonucleotide. The production of nitric oxide mediated by .gamma.-IFN in mouse peritoneal macrophage was increased by antisense-TGF.betha. in a dose-dependent manner. Antisense-$TGF{\beta}$ reduced the nitric oxide release from activated RAW 264.7 cells. Significant enhancement in the nitric oxide production was investigated by the cotreatment of poly-L-lysine with antisense-$TGF{\beta}$On the meanwhile, inhibition effect of antisense-$TGF{\beta}$ is not changed by the addition of poly-L-lysine. These results demonstrate that control of expression of $TGF{\beta}$ and TNF.alpha. gene is achieved using antisense technology and the cellular uptake of antisense oligonucleotide could be enhanced by ion-pairing.

  • PDF

신생아의 혈청내 Nitric Oxide와 Erythropoietin의 생성 (Production of Nitric Oxide and Erythropoietin in Serum of Newborn)

  • 정현기;김광혁
    • 생명과학회지
    • /
    • 제9권2호
    • /
    • pp.201-206
    • /
    • 1999
  • 본 연구는 정상 및 호흡곤란 신생아의 혈청내에 존재하는 nitric oxide(NO)의 생성을 관찰하고 erythropoietin (EPO)의 생성을 보기 위하여 정상 신생아 18명과 호흡곤란 신생아 16명으로부터 혈액을 채취하여 혈청내에서의 NO 및 EPO 생성량을 enzyme-linked immunosorbant assay법으로 측정하여 다음과 같은 결과를 얻었다. 1. 정상신생아의 혈청내 nitrite ion은 14.9$\pm$3.2 $\mu$M을 나타냈고 호흡곤란신생아군에서는 12.8$\pm$3.3 $\mu$M을 나타냄으로서 정상 대조군보다 호흡곤란군이 NO생성량이 낮음을 알 수 있었다. 2. 정상신생아의 혈청내 EPO는 16.2$\pm$3.4 mU/ml을 나타냈고 호흡곤란신생아군에서는 21.2 $\pm$5.4 mU/ml을 나타냄으로서 정상 대조군보다 호흡곤란군이 EPO생성량이 많음을 알 수 있었으며 통계학적으로 매우 유의한 차이를 나타냈다. 이상의 결과에서 호흡곤란증후군에서는 정상대조군에 비하여 NO생성이 대체적으로 저하되어 있음을 알 수 있었고 반대로 EPO의 생성은 증가되어 나타남으로서 EPO 상승에 따른 임상증상도 발현될 가능성이 있다하겠다.

  • PDF

RAW 264.7 Cell에서 세이지에 의한 염증성 Cytokine 및 iNOS억제 효과 (Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthasis in Murine Macrophage RAW264.7)

  • 현은아;이혜자;윤원종;박수영;강희경;김세재;유은숙
    • 약학회지
    • /
    • 제48권2호
    • /
    • pp.159-164
    • /
    • 2004
  • Primary pro-inflammatory cytokines are a trio: tumor necrosis- $\alpha$ (TNF-$\alpha$), interleukine-$\beta$ (IL-$\beta$), and interleukine-6 (IL-6). These cytokines initiate and regulate the acute-phase inflammatory response during infection, trauma, or stress and appear to play an important role in the immune process. Nitric oxide (NO) is a multi-functional mediator, which plays an important role in regulating various biological functions in vivo. NO production by inducible nitric oxide synthase (iNOS) in macrophages is essential for the defense mechanisms against microorganisms and tumor cells. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammatory and auto-immune disease. Solvent fractions of sage ( Salvia officinalis L.), which is cultivated in Jeju-Do, was assayed for their effects on TNF-$\alpha$ and IL-6 production in LPS-stimulated RAW 264.7 macrophages. Hexane and ethylacetate (EtOAc) fraction of sage inhibited the protein and mRNA expression of TNF-$\alpha$ and IL-6 in LPS stimulated RAW 264.7 cells at the concentration of 100 $\mu\textrm{g}$/$m\ell$. Also, incubation of RAW 264.7 cells with the fraction of hexane or EtOAc (50 $\mu\textrm{g}$/$m\ell$) inhibited the LPS induced nitrite accumulation and the LPS/IFN-${\gamma}$ induced iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. Above results suggest that extract of sage may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines (TNF-$\alpha$, IL-1$\beta$, IL-6), iNOS and NO.

Effects of Dietary Intervention and Simvastatin on Plasma Nitric Oxide in Patients with Hyperlipidemia

  • Yim, Jungeun;Choue, Ryowon;Park, Changshin;Cha, Youngnam;Chyun, Jonghee
    • Nutritional Sciences
    • /
    • 제7권4호
    • /
    • pp.214-217
    • /
    • 2004
  • Dietary intervention and simvastatin is beneficial in the prevention cardiovascular diseases by lowering plasma lipid levels. Endothelial dysfunction is associated with coronary artery disease and its risk factors and is reversed by dietary intervention. It has been suggested that hyperlipidemia contributes to the development of atherosclerosis by increasing inducible nitric oxide synthase (iNOS) expression via intimal thickening. Statins treatment has been found to decrease iNOS expression and atherogenensis in animal models. We hypothesized that dietary intervention and simvastatin therapy could decrease plasma nitric oxide in hypercholesterolemic patients, which would suggest the opportunity for modulation of iNOS expression through the use of statins in a clinical situation. We measured the plasma levels of nitrite and nitrate (NOx) in 19 hyperlipidemia patients. The subjects were under dietary intervention following simvastatin therapy for 12 weeks. As a result, the plasma level of NOx, stable metabolites of nitric oxide (NO), saw a two-fold elevation in hyperlipidemic patients as compared to normal levels. Although 12 weeks of dietary intervention did not lower NOx levels, subsequent 12-week simvastatin (10 mg/day) treatment, along with dietary intervention, lowered NOx levels significantly. This NOx reduction, induced by simvastatin therapy, positively correlated with lowered coronary risk factors (r=0.40, p=0.02). It indicated that simvastatin therapy decreases plasma NOx levels by, perhaps, decreasing iNOS expression or activity leading to the attenuation of the development of neointima.

Inhibition of Nitric Oxide Production by Ethyl Digallates Isolated from Galla Rhois in RAW 264.7 Macrophages

  • Park, Pil-Hoon;Hur, Jin;Lee, Dong-Sung;Kim, Youn-Chul;Jeong, Gil-Saeng;Sohn, Dong-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.419-424
    • /
    • 2011
  • Galla Rhois and its components are known to possess anti-infl ammatory properties. In the present study, we prepared equilibrium mixture of ethyl m-digallate and ethyl p-digallate isomers (EDG) from Galla Rhois and examined its effect on nitric oxide (NO) production in murine macrophage cell line. Treatment of RAW264.7 macrophages with EDG signifi cantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression stimulated by LPS, as assessed by Western blot and quantitative RT-PCR analyses. We also demonstrated that EDG treatment led to an increase in heme oxygenase-1 (HO-1) mRNA and protein expression. EDG treatment also enhanced expression level of nuclear factor-erythroid 2-related factor 2 (Nrf2) in nucleus, which is critical for transcriptional induction of HO-1. Treatment with SnPP (tin protoporphyrin IX), a selective HO-1 inhibitor, reversed EDG-mediated inhibition of nitrite production, suggesting that HO-1 plays an important role in the suppression of NO production by EDG. Taken together, these results indicate that EDG isolated from Galla Rhois suppresses LPS-stimulated NO production in RAW 264.7 macrophages via HO-1 induction.

산화질소 공여물과 산화질소 합성효소 길항제가 백서 폐미세혈관 내피세포 산화제 손상에 미치는 영향 (The Effect of Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor on Oxidant Injury to Cultured Rat Lung Microvascular Endothelial Cells)

  • 장준;;김세규;김성규;이원영;강경호;유세화;채양석
    • Tuberculosis and Respiratory Diseases
    • /
    • 제45권6호
    • /
    • pp.1265-1276
    • /
    • 1998
  • 연구배경 : NO는 생체내에서 생성되는 유리 반응기로서 혈관 긴장도외 완화, 혈소판 응집 저지, 혈관 내피세포에 대한 백혈구 유착 방해, 감염에 대한 숙주 방어 등에서 중요한 역할을 한다. NO는 전이 금속(transition metal), 산소, 기타 반응기 등과 쉽게 반응하므로 여러 생체내 반응에 관여하여 산화제 손상을 촉진시키거나 감소시킬 가능성이 제기되었다. 급성 폐손상 및 급성 호흡곤란 증후군에서는 폐혈관 내피세포 및 호중구의 상호작용 및 산화제 손상이 매우 중요한 병인으로 알려져 있으며, NO를 급성 호흡곤란 증후군에서 흡입하여 치료하는 것은 산화제에 의한 혈관 내피세포 손상에서 외부로부터 NO를 공급하는 상황이다. 본 연구에서는 외인성 NO의 공여나 내인성 NO 억제가 산화제에 의한 폐미세혈관 내피세포의 손상을 악화시키거나 완화시킬 수 있는지를 관찰하였다. 방 법 : 산화제에 의한 세포손상은 백서 폐미세혈관 내피세포에 과산화수소를 생성하는 glucose oxidase(GO)를 투여하여 야기시키고 이를 $^{51}Cr$ 방출 측정으로 평가하였다. 산화제에 의한 폐혈관 내피세포의 손상에 외인성 NO가 미치는 영향은 NO 공여물인 SNAP 혹은 SNP를 산화제와 동시에 투여하여 평가하였다. 산화제에 의한 폐혈관 내피세포의 손상에 내인성 NO 억제가 미치는 영향은 NOS 길항제인 L-NMMA을 추가로 투여하여 평가하였다. INF-$\gamma$, TNF-$\alpha$ LPS 등으로 내인성 NO 생성을 자극한 후 L-NMMA의 효과도 관찰하였으며, NO 공여물이나 내피세포로 부터의 NO생성은 nitrite 측정으로 평가하였다. 결 과 : 백서 폐 미세혈관 내피세포에서 $^{51}Cr$ 방출이 GO 5mU/ml에서 $8.7{\pm}0.5%$, 10 mU/ml에서 $14.4{\pm}2.9%$, 15 mU/ml에서 $32.3{\pm}2.9%$, 20 mU/ml에서 $55.5{\pm}0.3%$. 30 mU/ml에서 $67.8{\pm}0.9%$로 GO 15 mU/ml 이상에서 대조군의 $9.6{\pm}0.7%$에 비하여 유의하게 증가하였으며 (P<0.05; n=6). 이에 0.5mM L-NMMA를 추가하여도 영향이 없었다. INF-$\gamma$ 500 U/ml, TNF-$\alpha$ 150 U/ml, LPS 1 ${\mu}g/ml$을 배양액에 첨가하여 24시간 경과시 배양액 중 nitrite 농도가 $3.9{\pm}0.3\;{\mu}M$로 증가하였으며, 이에 L-NMMA 0.5 mM을 첨가하면 $0.2{\pm}0.l\;{\mu}M$로 유의하게 억제되었다(p<0.05 ; n=6). INF-$\gamma$, TNF-$\alpha$ LPS 자극후 GO에 의한 $^{51}Cr$ 방출에 L-NMMA는 영향을 주지 않았다. GO 20 mU/ml에 의한 $^{51}Cr$ 방출이 SNAP 100 ${\mu}M$의 추가로 대조군 수준으로 현저히 억제되었으나, SNP, potassium ferrocyanide, potassium ferricyanide 등의 추가는 영향이 없었다. Hanks' balanced salt solution(HBSS) 중의 SNAP 100 ${\mu}M$로 부터 4 시간 동안 nitrite가 $23.0{\pm}1.0\;{\mu}M$ 농도로 축적되었으나, SNP는 1 mM에서도 nitrite가 검출되지 않았다. SNAP은 HBSS 중의 GO가 과산화수소를 시간 경과에 따라 생성하는데 영향이 없었다. 결 론 : 결론적으로 폐미세혈관 내피세포에서 GO에 의하여 생성되는 과산화수소로 산화제 손상을 야기하였으며, NO 공여물인 SNAP으로부터 제공된 외연성 NO가 산화제 손상을 방지하고 이 보호효과는 NO 방출 능력에 의할 가능성이 시사되었다. 따라서 생체내 환경에 따라 외인성 NO가 내피세포에 대한 산화제 손상에 보호 효과가 있을 수 있다고 추정된다.

  • PDF

Evaluation on Pharmacological Activities of 2,4-Dihydroxybenzaldehyde

  • Jung, Hyun-Joo;Song, Yun-Seon;Lim, Chang-Jin;Park, Eun-Hee
    • Biomolecules & Therapeutics
    • /
    • 제17권3호
    • /
    • pp.263-269
    • /
    • 2009
  • 4-Hydroxybenzaldehyde, a phenolic compound found in a variety of natural sources, was previously shown to contain anti-inflammatory and related anti-angiogenic and anti-nociceptive activities. The present work was designed to assess some pharmacological activities of 2,4-dihydroxybenzaldehyde (DHD), an analogue of 4-hydroxybenzaldehyde. DHD exhibited a significant inhibition in the chick chorioallantoic membrane (CAM) angiogenesis, and its $IC_{50}$ value was $2.4\;{\mu}g/egg$. DHD also contained in vivo anti-inflammatory activity using acetic acid-induced permeability and carrageenan-induced air pouch models in mice. In the air pouch model, DHD showed significant suppression in exudate volume, number of polymorphonuclear leukocytes and nitrite content. DHD showed an anti-nociceptive activity in the acetic acid-induced writhing test in mice. It also suppressed enhanced production of nitric oxide (NO) and elevated expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. It was able to slightly decrease the level of reactive oxygen species in the stimulated macrophages. DHD at the used concentrations couldn't modulate the viabilities of RAW264.7 cells. Taken together, like 4-hydroxybenzaldehyde, DHD contains anti-angiogenic, anti-inflammatory and anti-nociceptive activities.

삼자산(三子散)이 흰쥐 음경조직의 Nitric Oxide Synthase 활성 및 과산화지질 함량에 미치는 영향 (Effects of the Extract of Samjasan on the Nitric Oxide Synthase Activity and the Level of Lipid Peroxide in Penis of Rats)

  • 위영택;박종혁;윤철호;정지천;신억섭;민건우
    • 대한한방내과학회지
    • /
    • 제22권1호
    • /
    • pp.53-61
    • /
    • 2001
  • Objectives : The following are the results of the experimental studies of Samjasan (SJS) extract on the nitric oxide synthase (NOS) activity and the level of lipid peroxide in the penises of rats. Methods : Cnidii Fructus, Cuscutae Semen, Schizandrae Fructus constitute SJS. 150 g of crushed crude drug was extracted with methyl alcohol, under reflux, for 24 hours, three times; the total extractive was evaporated under reduced pressure to give 28.6 g. Results : In vitro, the SJS extract didn't effect the activity of NOS. However, the SJS extract decreased the activities, the ratio of type conversion of xanthine oxidase, the levels of lipid peroxide, In vitro, after administration of the SJS extract to rats, the activities and ratio of type conversion of xanthine oxidase decreased, but the activity of NOS and the content of nitrite increased. Also, the levels of the superoxide anion radical and lipid peroxide decreased in the penises of rats. But, after administration of the SJS extract to rats, the levels of glutathione did not increase. The effects of the SJS extract did better as the dosage and the length of treatment increased. Conclusions : These results suggest that the SJS extract decreases the activities of free radical generating enzymes which form lipid peroxide and increases the NOS activity in the penises of rats. Therefore, the SJS extract is capable of improving of sexual ability in rats.

  • PDF

Smooth Muscle Relaxation by the Herbal Medicine Ssanghwatang associated with Nitric Oxide Synthase Activation and Nitric Oxide Production

  • Kim, Joong-Kil;Shim, Ha-Na;Lee, Seung-Hee;Yoo, Kwan-Suk;Song, Bong-Keun
    • 대한한의학회지
    • /
    • 제27권4호
    • /
    • pp.74-83
    • /
    • 2006
  • Ssanghwatang (SHT) has been known to prove effective in the treatment for erectile dysfunction (ED), and its modified formula is widely used in clinical practice. However, its fundamental mechanism of action is not clearly known. It is well known that endothelial cells can achieve the relaxation of vascular smooth muscles by the release of nitric oxide (NO). NO is synthesized by the enzyme NO synthase (NOS) from L-arginine and oxygen. It is widely accepted that NO plays an important role in the relaxation of corpus cavernous smooth muscle and vasculature. In addition, in terms of the penile erection, the NO/cGMP pathway is more potent than the PCE1/cAMP pathway. The main purpose of the present study was to investigate the mechanism of the erectile effects of SHT by focusing on its direct effects on corpus cavernous smooth muscle cells. We investigated the NOS activity, nitrite concentration and cGMP levels in rat corpus cavernous smooth muscle cell lines activated by SHT extracts. Furthermore, we evaluated the effect of SHT extracts on penile smooth muscle relaxation following oral administration of SHT extract powder to rats by the dosage of 1 g/kg over fifteen days. As a result, we found that SHT stimulated NO release. NOS activity and cGMP levels were increased by SHT respectively. Furthermore, SHT relaxed the corpus cavernous smooth muscle. These results are consistent with the concept that penile erection by SHT is carried out through the NO/cGMP pathway. In conclusion, the present study shows that SHT increases the NOS activity, synthesizes NO and augments the cGMP, which mediates penile erection. Further determination of the SHT mechanism related with the NO/cGMP pathway strongly indicates that SHT can be used as a remedy for erectile impotence.

  • PDF