• Title/Summary/Keyword: nitrification process

Search Result 262, Processing Time 0.034 seconds

Operating Characteristics of Two Stage Membrane Bioreactor (2단형 막분리 활성슬러지법(Two Stage MBR)의 운전 특성에 관한 고찰)

  • Park, Jae-Roh;Lim, Hyun-man;Kim, Eoung Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.141-150
    • /
    • 2002
  • Two-stage membrane bioreactor using submerged hollow fiber membrane was applied in laboratory scale to treat nitrogen and phosphorus of domestic wastewater. Alum as the flocculant and adsorbent was added into the anaerobic basin of two-stage membrane bioreactor and mixed liquid of aerabic basin was recycled to the anaerobic basin for the purpose of nitrogen removal. Experiment was carried out to find removal efficient of phosphorous and nitrogen components in the mixed liquid, and the stability of the permeate flux and pressure of two-stage membrane bioreactor. In case of alum was added as the flocculant and adsorbent into the anaerobic basin, soluble phosphorus removal efficient was relatively higher and total permeate resistance(Rtot) was more increased out nitrogen removal efficient was lower as the result of lack of alkalinity and insufficient nitrification process than the case of alum was not added.

Nitrogen removal, nitrous oxide emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes

  • Sun, Yuepeng;Xin, Liwei;Wu, Guangxue;Guan, Yuntao
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.107-116
    • /
    • 2019
  • Nitrogen removal, nitrous oxide ($N_2O$) emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes were investigated. Two sequencing batch reactors (SBRs) and two continuous-flow multiple anoxic and aerobic reactors (CMRs) were operated under high dissolved oxygen (DO) (SBR-H and CMR-H) and low DO (SBR-L and CMR-L) concentrations, respectively. Nitrogen removal was enhanced under CMR and low DO conditions (CMR-L). The highest total inorganic nitrogen removal efficiency of 91.5% was achieved. Higher nitrifying and denitrifying activities in SBRs were observed. CMRs possessed higher $N_2O$ emission factors during nitrification in the presence of organics, with the highest $N_2O$ emission factor of 60.7% in CMR-L. SBR and low DO conditions promoted $N_2O$ emission during denitrification. CMR systems had higher microbial diversity. Candidatus Accumulibacter, Nitrosomonadaceae and putative denitrifiers ($N_2O$ reducers and producers) were responsible for $N_2O$ emission.

Effect of Temperature on Nitritation using Effluent of Anaerobic Digester (혐기 소화조 유출수의 아질산화 반응에 온도가 미치는 영향)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2011
  • Preparing for the Standards for Effluents which will be strengthen from 2012, many ways like remodellings and repairs of sewage treatment plant (STP) are considered. The treatment of the recycle water from the sludge treatment process contains high-strength organic compounds and nitrogen is considered as alternative. In the treatment of high-strength nitrogen, nitritation has more economic advantages than nitrification. In this study, lab-scale reactor was operated at the $35^{\circ}C$, $20^{\circ}C$ and $10^{\circ}C$ conditions using effluent of anaerobic digester to investigate the nitrogen removal by nitritation. Long-term stable nitritation was achieved at the $35^{\circ}C$, $20^{\circ}C$ but $10^{\circ}C$. In the stable nitritation states, nitrite conversion was higher at the high temperature of $35^{\circ}C$ than the room temperature of $20^{\circ}C$. Also shorter solid retention time (SRT) was needed to induce high nitrite conversion at the high temperature of $35^{\circ}C$. It was showed that temperature and SRT are important factors to induce nitritation.

Determination optimal ratio of ammonium to nitrite in application of the ANAMMOX process in the mainstream (Mainstream ANAMMOX 공정 적용시 암모니아성 질소 대비 아질산성 질소 비율 도출 연구)

  • Lee, Dawon;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • As the concentration of nitrogen in the sewage flowing into the sewage treatment plant increases due to urbanization and industrialization, the degree of adverse effects such as eutrophication and toxicity to the aquatic ecosystem is also increasing. In order to treat sewage containing high concentration of nitrogen, various studies on the biological nitrogen removal process are being conducted. Existing biological nitrogen removal processes require significant costs for supplying oxygen and supplementing external carbon sources. In this respect, as a high-level nitrogen removal process with economic improvement is required, an anaerobic ammonium oxidation process (ANAMMOX), which is more efficient and economical than the existing nitrification and denitrification processes, has been proposed. The purpose of this study is to confirm the stability of the ANAMMOX process in the water treatment process and to derive the ratio of ammonia nitrogen (NH4+) to nitrite nitrogen (NO2-) for the implementation of the mainstream ANAMMOX process. A laboratory-scale Mainstream ANAMMOX reactor was operated by applying the ratio calculated based on the substrate ratio suggested in the previous study. In the initial range, the removal efficiency of NH4+ was 58~86%, and the average removal efficiency was 70%. In the advanced range, the removal efficiency of NH4+ was 94~99%, and the average removal efficiency was 95%. As a result of the study, as the NH4+/NO2- ratio increased, the stability of the mainstream ANAMMOX process was secured, and it was confirmed that the NH4+ removal efficiency and the total nitrogen (TN) removal efficiency increased. As a result, the results of this study are expected to be used as basic data in the application of the ANAMMOX process in the mainstream.

Effect of Alkaline Pretreatment on Sludge Aerobic Digestion and Fertilizer Value (알칼리 전처리에 의한 슬러지 호기성 소화 및 액비 특성 변화)

  • Hwang, Eung-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.90-96
    • /
    • 2008
  • In order to meet the stringent requirement of sludge disposal and to find ecological alternative, aerobic digestion coupled with alkaline pretreatment was studied. The treated sludge was tested for the potential of liquid fertilizer. In the aerobic digestion, it was obvious that the performance of digester B(fed with the sludge pretreated by NaOH) was better than that of digester A(fed with raw sludge) in terms of COD and SS removal. SS and VSS removal rates in digester B were 66% and 69%, respectively. At 5 days, TSS removal rate reached 47% in the digester B, which was 71% of final TSS removal rate. It revealed that the pretreatment process can shorten the retention time of aerobic digestion. 94.1% of TCOD in the raw sludge was reduced by alkaline pretreatment and aerobic digestion. Final SCOD was in the range of 220$\sim$230 mg/L implying the sludge was stabilized. Nitrification and pH drop were observed in the aerobic digestion. Final nitrate concentrations in digester A and B were 445.4 and 223.1 mg/L and final pH in digester B was 3.0. Biological assays reported that leaf size of cucumber seedling increased with nitrate concentration and sludge to soil ratio. The sludge treated by alkaline and aerobic digestion promoted the growth of seedling leaf and stem remarkably compared to raw sludge. In contrast, the aerobically digested sludge without pretreatment improved leaf growth and inhibited stem growth.

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland (이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.261-266
    • /
    • 2001
  • Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

  • PDF

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

A Study on the treatment efficiency of A2O Process coupled with Mesh Screening Reactor (Mesh Screening Reactor와 결합된 A2O 공정의 처리효율에 관한 연구)

  • Whang, Gye-Dae;Lim, Dong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.705-714
    • /
    • 2008
  • Three Mesh Screenning Reactors (MSRs) were operated in three different modes to investigate the effect of the mesh opening size and the filtrate flux on the removal of particulate matters and the production of soluble organic matters. The mesh opening size was $82{\mu}m$ (Mode 1), $61{\mu}m$ (Mode 2) and $38{\mu}m$ (Mode 3), respectively, and each mode has three different filtrate flux; $0.47m^3/m^2/d$, $0.95m^3/m^2/d$ and $1.42m^3/m^2/d$, respectively. TSS removal efficiency of mode 1, 2, and 3 fed with 191 mgTSS/L was 27%, 36%, and 60%, respectively. The SCOD concentration of 91mg/L in influent for the mode 1, 2, and 3 increased to 117 mg/L, 127 mg/L, and 155 mg/L, respectively. For the all MSRs, there was no significant effect of filtrate flux on the removal of particulate matters and the production of soluble organic matters. However, the mesh opening size greatly affected the removal of particulate matters and the production of soluble organic matters in wastewater. Three parallel A2O processes consisting of anaerobic, anoxic and aerobic reactors maintaining mixed liquor suspended solids (MLSS) of 3,000 mg/L were operated to investigate the effectiveness of MSR on the removal efficiencies of the organic matters, nitrogen, and phosphorus; MSR influent was introduced to System 1 (183 mgTSS/L, 324 mgTCOD/L, 87 mgSCOD/L, 45.2 mgTKN/L, and 6.6 mgTP/L) and MSR efluent was introduced to System 2 and 3(72 mgTSS/L, 289 mgTCOD/L, 141 mgSCOD/L, 40.2 mgTKN/L, and 4.2 mgTP/L). HRTs of the anaerobic reactors in systems 1, 2 and 3 were 1 h, 1 h and 0.6 h, respectively and anoxic reactors were 2 h in all systems. HRTs of the aerobic reactors in systems 1, 2 and 3 were 5 h, 3 h and 3 h, respectively. TSS concentration in effluent of both system 2 and 3 is about 8 mg/L and lower than that of system 1 effluent. Despite higher TCOD loading and SCOD loading, both Systems 2 and 3 had a greater TCOD and SCOD removal efficiency at 91% and 92% than System 1 was at 88% and 82%, respectively. The nitrification efficiency for system 2 was greater than observed for System 1 (99% verses 97%). The denitrification efficiency for systems 1, 2 and 3 was 78%, 88% and 87%, respectively. System 2 and 3 showed about 12% higher TN removal efficiency than system 1 (85% verses 73%). The effluent TP concentration for system 2 was less than observed for system 1 and 3.

Evaluation and Comparison with Standard 48 hr Acute Bioassay and High Temperature Rapid Toxicity Test for Sewage Toxicity Test (하수의 독성평가를 위한 표준독성시험법과 온도증가 단기독성평가법의 비교 평가)

  • Lee, Sang-Ill;Jun, Byong-Hee;Weon, Seung-Yeon;Kim, Yi-Jung;Kim, Keum-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • A new method, ToxTemp (TOXcity test based on TEMPerature control) using Ceridaphnia dubia was applied to evaluate the toxicity of insecticide materials and compared with the standard 48 hr acute bioassay. BPMC, diazinon and fenitrothion may cause the inhibition to the biological process in sewage treatment plant and need to detect toxicity within short contact time. The ToxTemp method showed sensitive detection with more shorter contact of 1-1.5 hr time than that of the standard 48 hr acute bioassay. To evaluate toxicity of real wastewater/sewage, the inhibition rate of nitrification and oxygen uptake rate (OUR) using activated sludge, the standard 48hr acute bioassay and ToxTemp method using C. dubia were compared, respectively. On the basis of the inhibition rate of nitrification, the OUR test showed the less sensitive results at the relatively strong toxic sewage. On the other hands, the standard 48hr acute bioassay and ToxTemp method using C. dubia represented the toxicity of each wastewater/sewage with high sensitivity. Even the slightly low (about 1.5%) sensitivity, the ToxTemp method showed the high applicability to the real site of sewage treatment plant.

Changes In Concentrations of Urea-N, NH4-N and NO3-N in Percolating Water During Rice Growing Season (수도재배포장에서 침투수의 Urea-N, NH4-N 및 NO3-N의 농도변화)

  • Lee, Sang-Mo;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.160-164
    • /
    • 1995
  • This study was conducted to obtain quantitative data on the behavior of surface-applied urea to a paddy field which would help to protect against environmental pollution as well as to increase the efficiency of nitrogen fertilizer. The percolating water samples were collected with porous ceramic cups installed at 25, 50 and 75cm depths in a paddy field during the rice growing season(June 1992-September 1992) and analyzed for urea-N. NHAN and $NO_3-N$. In the paddy field to which urea fertilizer was applied at the rates of 12 and 24kg N/10a, the surface-applied urea was detected even at 75cm depth as the form of urea-N upto 12days after application. The maximum concentrations of urea-N in the percolating water sampled at 25, 50 and 75cm depths were the same irrespective of soil depth and the values were 0.06 and $0.12{\mu}g/m{\ell}$ for the application rates of 12 and 24kg N/10a respectively. The concentrations of $NH_4-N$ gradually decreased with time during the vegetative growth period : thereafter. the concentrations remained nearly constant. The maximum concentrations of $NH_4-N$ at 25cm depth were 1.2 and $5.6{\mu}g/m{\ell}$ for 12 and 24kg N/10a rate respectively. The $NO_3-N$ concentrations of percolating water ranged 0.1~0.5 and $0.2{\sim}0.5{\mu}g/m{\ell}$ for urea application rates of 12 and 24kg N/10a respectively. The nitrate concentration data suggest that nitrification process occurred continuously in paddy field during the rice growing season.

  • PDF