• Title/Summary/Keyword: nitride ceramic materials

Search Result 151, Processing Time 0.025 seconds

Preparation and Properties of Silicon Nitride Ceramics by Nitrided Pressureless Sintering (NPS) Process (Nitrided Pressureless Sintering 공정을 이용한 질화규소 세라믹스의 제조 및 특성)

  • Cheon, Sung-Ho;Han, In-Sub;Chung, Yong-Hee;Seo, Doo-Won;Lee, Shi-Woo;Hong, Kee-Soeg;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.893-899
    • /
    • 2004
  • The mechanical properties and microstructure and thermal properties of Nitrided Pressureless Sintering(NPS) silicon nitride ceramics, containing three type of $Al_{2}O_3,\;Y_{2}O_3$ sintering additives, were investigated. Also, we have investigated the effect of silicon metal content changing with 0, 5, 10, 15, and $20wt\%$ Si in each composition. In $5wt\%\;Al_{2}O_3,\;5wt\%\;Y_{2}O_3,\;and\;5wt\%$ Si composition, silicon nitride sintered body was successfully densified to a high density. The average 4-point flexural strength and relative density of these specimens were 500 MPa and 98% respectively. Also, Thermal expansion coefficient and thermal conductivity of specimens at room temperature were $2.89{\times}10^{-6}/^{\circ}C\;and\;28W/m^{\circ}C$, respectively. The flexural strength of sintered specimens after thermal shock test of 20,000 cycles was maintained as-received value of 500 MPa.

Effect of Sintering Additive and Composition on Cutting Performance of SiAlON (SiAlON의 절삭성능에 미치는 소결조제와 조성의 영향에 대한 연구)

  • Choi, Jae-Hyeong;Lee, Sung-Min;Nahm, Sahn;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.415-420
    • /
    • 2019
  • SiAlON ceramics are used as ceramic cutting tools for heat-resistant super alloys (HRSAs) due to their excellent fracture toughness and thermal properties. They are manufactured from nitride and oxide raw materials. Mixtures of nitrides and oxides are densified via liquid phase sintering by using gas pressure sintering. Rare earth oxides, when used as sintering additives, affect the color and mechanical properties of SiAlON. Moreover, these sintering additives influence the cutting performance. In this study, we have prepared $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m = 0.5; n = 0.5, 1.0) ceramics and manufactured SiAlON ceramics, which resulted in different colors. In addition, the characteristics of the sintered SiAlON ceramics such as fracture toughness and microstructure have been investigated and results of the cutting test have been analyzed.

Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint ($Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

Fabrication of Porous RBSN Ceramics with Aligned Channels by an Ice-Templating Method

  • Kim, Dong-Seok;Go, Jae-Ung;Kim, Do-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.97.1-97.1
    • /
    • 2012
  • Porous ceramics are widely used for applications such as catalysis supports, gas distributors and filters such as DPF. For these purpose, it is important to have proper porosity controlling pore structure while maintaining mechanical and thermal properties. In this work, we have prepared the porous ceramic structures made of reaction bonded silicon nitride with hierarchical pore structures. Uni-directionally aligned pore channels, which are mostly filled with ${\beta}$-Si3N4 whiskers, were achieved by an ice-templating method. The structures of the pore channels and the walls are controllable by the processing conditions, such as solid concentration, freezing rate of the slurry, and additives. We have investigated and characterized the influences of the conditions on the microstructures and the properties, such as porosity, pore size distribution, lamellar thickness, wavelength, and orientations. The compressive strength test and flow test was performed to determine the structural integrity and air permeability.

  • PDF

The Study of Reaction Bonded Silicon Nitride Fabricated Under Static Nitrogen Pressure (일정 질소압에서 제조된 반응결합 질화규소에 관한 연구)

  • Choi, Myoung-Je;Roh, Tae-Wook;Park, Chan;Park, Dong-Soo;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.505-510
    • /
    • 2000
  • In this investigation, we fabricated RBSN (Reaction Bonded Silicon Nitride) using the static nitriding system which could be advantageous for commercialization. Firstly, Si compacts of different sizes were made, and then nitridation rates were investigated as a function of added static gas pressure. The reaction schedule was obtained by pre-experiments. In case of small samples, the variation of ${\alpha}$, ${\beta}$ phases between the inside and the outside region of the specimens was examined after the samples were nitrided under 1 bar and 1.5 bar reaction pressure. On the other hand, large samples of Si compact with the size of 36 mm for diameter and 23 mm for thickness were nitrided for 26 hours of the total nitridation time, which showed a complete and homogeneous nitriding reaction from the outside to the inside of the samples, although the time was considerably shorter than that needed for convertional nitridation. Nitridation rates obtained at the early stage of reaction were proportional to the reaction gas pressures. The sequences of the nitridation reaction with the thickness were as follows 1) the outside, 2) the inside and 3) the intermediate area of the specimen. These results wer eobtained from the coloration of cross sectioned specimens that had various nitridation rates. Total nitriding reaction kinetics was controlled by chemical reaction, not by diffusion of the nitrogen gas.

  • PDF

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.

Effect of Alanine on Cu/TaN Selectivity in Cu-CMP (Cu-CMP에서 Alanine이 Cu와 TaN의 선택비에 미치는 영향)

  • Park Jin-Hyung;Kim Min-Seok;Paik Ungyu;Park Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.426-430
    • /
    • 2005
  • Chemical mechanical polishing (CMP) is an essential process in the production of integrated circuits containing copper interconnects. The effect of alanine in reactive slurries representative of those that might be used in copper CMP was studied with the aim of improving selectivity between copper(Cu) film and tantalum-nitride(TaN) film. We investigated the pH effect of nano-colloidal silica slurry containing alanine through the chemical mechanical polishing test for the 8(inch) blanket wafers as deposited Cu and TaN film, respectively. The copper and tantalum-nitride removal rate decreased with the increase of pH and reaches the neutral at pH 7, then, with the further increase of pH to alkaline, the removal rate rise to increase soddenly. It was found that alkaline slurry has a higher removal rate than acidic and neutral slurries for copper film, but the removal rate of tantalum-nitride does not change much. These tests indicated that alanine may improve the CMP process by controlling the selectivity between Cu and TaN film.

Tribological Properties of Hot Pressed $SiC/Si_3N_4$ Composites (가압소결 $SiC/Si_3N_4$ 복합체의 마찰마모특성)

  • Baik, Yong-Hyuck;Choi, Woong;Park, Yong-Kap
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1102-1107
    • /
    • 1999
  • SiC-Si3N4 composites were prepared by mixing $\alpha$-Si3N4 powder to $\alpha$-SiC powder in the range of 10 to 30 vol% with 10vol% interval. 6wg% Al2O3 and 6wt% Y2O3 were respectively added as sintering aids. Hot pressing was performed at 1,80$0^{\circ}C$ for 1 hour with 25 MPa pressure. In the case of adding 20vol% of $\alpha$-Si3N4 powder the relative density to theoretical value and the flexural strength were 99.1% and 34,420 MPa respectively and the worn amount was 2.09$\times$10-3 mm2 which were the highest values in the all range of he composition. Although the composite containig 10 vol% of $\alpha$-Si3N4 powder showed the highest fracture toughness(KIC) of 4.65MN/m3/2 the reduction of the wear resistance in this composite is likely to be affected by the homogeneity and the uniformity of the grain coalescence and growth during the sintering process.

  • PDF

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon;Ko, Jae-Woong;Park, Young-Jo;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.318-324
    • /
    • 2012
  • Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.