• Title/Summary/Keyword: nitric oxide generation

Search Result 258, Processing Time 0.026 seconds

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.

Evaluation of Anti-Oxidant and Anti-Inflammatory Activities of Ganoderma lucidum Cultured on Hulled Barley (겉보리에서 배양한 영지버섯 추출물의 항산화 및 항염증 효능 평가)

  • Seo, Kyoung Hee;Kim, Yeon Hwa;Lee, Young Min;Ghosh, Mithun;Park, Kang Min;Park, Dong Hyun;Kim, Jin Seong;Lim, Beong Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • Background: Ganoderma lucidum cultured on hulled barley was investigated as a potential natural source of antioxidants and anti-inflammatory agents. Methods and Results: The yields from Ganoderma lucidum cultured on hulled barley water and ethanol extract were 17.69% and 25.77%, respectively. The antioxidant activity of Ganoderma lucidum cultured on hulled barley extracts was confirmed by various methods including assayss of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS), nitrite radical scavenging, and $Fe^{3+}$ to $Fe^{2+}$ reducing power activity. The ethanol extract of Ganoderma lucidum cultured on hulled barley showed improved DPPH, ABTS and nitrite radical scavenging activity compared with the water extract. After treatment of RAW264.7 cells with Ganoderma lucidum cultured on hulled barley ethanol extracts, the cell viability compared with the control was 92.82%, even at a concentration of $3,000{\mu}g/m{\ell}$. The ethanol extract inhibited reactive oxygen species (ROS) generation in RAW264.7 cells stimulated with $H_2O_2$, even at low concentrations. In addition, the ethanol extract showed an inhibitory effects on the production of lipopolysaccharide-induced nitric oxide (NO) in RAW264.7 cells. Conclusions: This study suggests that the extract of Ganoderma lucidum cultured on hulled barley is a potential source of natural antioxidants and anti-inflammatory agents.

In Vitro Radical Scavenging Effect and Neuroprotective Activity from Oxidative Stress of Petasites japonicus (머위 분획물의 In Vitro 라디칼 소거능 및 신경세포의 산화적 스트레스 보호 효과)

  • Wang, Qian;Lee, Ah Young;Choi, Ji Myung;Lee, Dong Gu;Kim, Hyun Young;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • This study was focused on the evaluation of radical scavenging effect and the protective activity against oxidative stress of the extract and fractions from Petasites japonicus. P. japonicus was extracted with methanol and then fractionated into 4 fractions [n-butanol, ethyl acetate (EtOAc), methylene chloride, and n-hexane]. The extract and fractions showed strong 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among all the fractions, particularly, the EtOAc fraction showed the strongest effect with the $IC_{50}$ value of $0.02{\mu}g/ml$. In addition, the fractions also showed strong hydroxyl radical scavenging activity and nitric oxide scavenging activity as well. Furthermore, cell viability generated by the P. japonicus extract and 4 fractions were examined under C6 glial cellular model. The C6 glial cells showed high generation of reactive oxygen species (ROS) and decrease in cell viability by the treatment generator of hydrogen peroxide. However, the production of ROS formation was decreased by the treatment of the fractions of P. japonicus and also founded that the EtOAc fraction led to significant increase in the cell viability at concentration $100{\mu}g/ml$. Results from this work indicated that P. japonicus showed protective effects against oxidative stress and its EtOAc fraction may be served as a useful natural antioxidant.

Different oxidative burst patterns occur during host and nonhost resistance responses triggered by Xanthomonas campestris in pepper

  • Kwak, Youn-Sig;Han, Ki-Soo;Lee, Jung-Han;Lee, Kyung-Hee;Chung, Woo-Sik;Mysore, Kirankumar S.;Kwon, Young-Sang;Kim, Hee-Kyu;Bae, Dong-Won
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.244-254
    • /
    • 2009
  • The hypersensitive reaction (HR) is the most common plant defense reaction against pathogens. HR is produced during both host- and nonhost-incompatible interactions. Several reports suggest that similarities exist between host and nonhost resistances. We assayed the pattern of generation of reactive oxygen species (ROS) and scavenging enzyme activities during nonhost pathogen-plant interactions (Xanthomonas campestris pv. campestris/Capsicum annuum L.) and incompatible host pathogen-plant interactions (Xanthomonas campestris pv. vesicatoria race1/Capsicum annuum L.). Both ${O_2}^-\;and\;H_2O_2 $ accumulated much faster during nonhost resistance when compared to the host resistance. The scavenging enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were also different during the host- and nonhost-incompatible interactions. CAT activity was much higher during nonhost resistance, and several new isozymes of SOD and POX were detected during nonhost resistance when compared to the host resistance. Lipoxygenase (LOX) activity was higher in host resistance than nonhost resistance during the early stages of infection. Interestingly, the nitric oxide (NO) radical accumulated equal amounts during both host and nonhost resistance at early stages of infection. Further studies are needed to determine the specific pathways underlying these differences between host and nonhost resistance responses.

Selection and immunomodulatory evaluation of lactic acid bacteria suitable for use as canine probiotics (개 생균제 사용에 적합한 유산균주의 선발 및 면역활성 평가)

  • Park, Su-Min;Park, Ho-Eun;Lee, Wan-Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.81-88
    • /
    • 2015
  • This study was conducted to isolate lactic acid bacteria (LAB) from dog intestine and identify potential probiotic strains for canine use. One hundred and one LAB were isolated from feces of 20 healthy dogs. Acid, bile, and heat resistance along with adherence to Caco-2 cells and antimicrobial activity against pathogens were examined. To analyze immunomodulative effects, the production of nitric oxide (NO), TNF-${\alpha}$, and IL-$1{\beta}$ was measured using RAW 264.7 macrophages. Additionally, RAW BLUE cells were used to evaluate nuclear factor-${\kappa}B$ (NF-${\kappa}B$) generation. Ultimately, three strains were selected as canine probiotics and identified as Lactobacillus reuteri L10, Enterococcus faecium S33, and Bifidobacterium longum B3 by 16S rRNA sequence analysis. The L10 and S33 strains showed tolerance to pH 2.5 for 2 h, 1.0% Oxgall for 2 h, and $60^{\circ}C$ for 5 min. These strains also had strong antimicrobial activity against Escherichia coli KCTC 1682, Salmonella Enteritidis KCCM 12021, Staphylococcus aureus KCTC 1621, and Listeria monocytogenes KCTC 3569. All three strains exerted better immunomodulatory effects than Lactobacillus rhamnosus GG (LGG), a well-known commercial immunomodulatory strain, based on NO, NF-${\kappa}B$, IL-$1{\beta}$, and TNF-${\alpha}$ production. These results suggested that the three selected strains could serve as canine probiotics.

Anti-Inflammatory Effects of Streamed Platycodon grandiflorum against UVB Radiation-Induced Oxidative Stress in Human Primary Dermal Fibroblast

  • Lee, Ji Yeon;Park, Jeong-Yong;Lee, Dae Young;Kim, Hyung Don;Kim, Geum-Soog;Lee, Seung Eun;Seo, Kyung Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.495-501
    • /
    • 2018
  • Ultraviolet B (UVB) exposure is a risk factor for skin damage resulting in oxidative stress, inflammation, and cell death. The purpose of this study was to investigate the physicochemical properties of Platycodon grandiflorum (PG) to improve its biological activities using a three-step steaming process. We investigated the protective effects of PG and steamed PG extracts on human dermal fibroblasts (HDFs) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the PG extracts was evaluated by measuring the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging activity. ABTS and DPPH were shown by the 0, 30, and 70% ethanol extracts of 2S-PG and 3S-PG ($IC_{50}$, 28~45 and $27{\sim}30{\mu}g/mL$, respectively). Treatment of UVB-irradiated cells with steamed PG ($25{\sim}400{\mu}g/mL$) did not affect their viability. The streamed PG extract suppressed UVB-induced generation of reactive oxygen species (ROS). In addition, streamed PG extract reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in UVB-irradiated HDF, regulating nuclear factor $(NF)-{\kappa}B$ expression. These findings suggest that steamed PG extract may be potentially effective against inflammation associated with UVB-induced oxidation stress.

Reactive Oxygen Species and Nitrogen Species Differentially Regulate Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are implicated in cellular signaling processes and as a cause of oxidative stress. Recent studies indicate that ROS and RNS are important signaling molecules involved in nociceptive transmission. Xanthine oxidase (XO) system is a well-known system for superoxide anions ($O{_2}^{{\cdot}_-}$) generation, and sodium nitroprusside (SNP) is a representative nitric oxide (NO) donor. Patch clamp recording in spinal slices was used to investigate the role of $O{_2}^{{\cdot}_-}$ and NO on substantia gelatinosa (SG) neuronal excitability. Application of xanthine and xanthine oxidase (X/XO) compound induced membrane depolarization. Low concentration SNP ($10{\mu}M$) induced depolarization of the membrane, whereas high concentration SNP (1 mM) evoked membrane hyperpolarization. These responses were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger). Addition of thapsigargin to an external calcium free solution for blocking synaptic transmission, led to significantly decreased X/XO-induced responses. Additionally, X/XO and SNP-induced responses were unchanged in the presence of intracellular applied PBN, indicative of the involvement of presynaptic action. Inclusion of GDP-${\beta}$-S or suramin (G protein inhibitors) in the patch pipette decreased SNP-induced responses, whereas it failed to decrease X/XO-induced responses. Pretreatment with n-ethylmaleimide (NEM; thiol-alkylating agent) decreased the effects of SNP, suggesting that these responses were mediated by direct oxidation of channel protein, whereas X/XO-induced responses were unchanged. These data suggested that ROS and RNS play distinct roles in the regulation of the membrane excitability of SG neurons related to the pain transmission.

Volatile Organic Compound Specific Detection by Electrochemical Signals Using a Cell-Based Sensor

  • Chung, Sang-Gwi;Kim, Jo-Chun;Park, Chong-Ho;Ahn, Woong-Shick;Kim, Yong-Wan;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.145-152
    • /
    • 2008
  • A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-${\kappa}B $ downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.

Peroxynitrite Scavenging Mechanism of Zingiberis Rhizoma (생강(生薑)의 Peroxynitrite 제거 기전)

  • Shin Sang-Guk;Jeong Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Objectives : Peroxynitrite($ONOO^-$), formed from the reaction of $O2^-$ and NO, is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been involved in the aging process and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate scavenging activities of $ONOO^-$ and its precursors, NO and $O_{2^-}$ and its scavenging mechanism of Zingiberis Rhizoma (ZR). Methods : To investigate scavenging activities of $ONOO^-,\;NO,\;O_{2^-}$ and its scavenging mechanism, we used fluorescent probes like DCFDA, DAF-2 and DHR 123. The $ONOO^-$ scavenging activity on ZR was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorometry. The scavenging efficacy was expressed as IC50, showing the concentration of each sample that is required to cause 50% inhibition of DHR 123 oxidation. In a separate study, the protective effect of ZR on $ONOO^-$-induced nitration of bovine serum albumin was investigated through immuno-assay with a monoclonal anti-nitryrosine antibody, and a horseradish peroxidase-conjugated anti-mouse secondary antibody from sheep. Results : ZR markedly scavenged authentic $ONOO^-,\;O_{2^-}$ and NO. It also inhibited $ONOO^-$ induced by $O_{2^-}$ and NO which are derived from SIN-1. The data demonstrated that ZR led to decreased $ONOO^-$ mediated nitration of tyrosine through electron donation. It also inhibited the nitration of bovine serum albumin induced by $ONOO^-$ in a dose-dependent manner. Furtheremore, it blocked LPS-induced ROS and RNS generation. Conclusions : These results suggest that ZR can be developed as an effective $ONOO^-$ scavenger for the prevention of aging process and age-related diseases.

  • PDF

Luteolin 5-O-glucoside from Korean Milk Thistle, Cirsium maackii, Exhibits Anti-Inflammatory Activity via Activation of the Nrf2/HO-1 Pathway

  • Jung, Hyun Ah;Roy, Anupom;Abdul, Qudeer Ahmed;Kim, Hyeung Rak;Park, Hee Juhn;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • Luteolin 5-O-glucoside is the major flavonoid from Korean thistle, Cirsium maackii. We previously reported the anti-inflammatory activities of luteolin 5-O-glucoside in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In this study, we determined the anti-inflammatory mechanisms of luteolin 5-O-glucoside through the inhibition of nitric oxide (NO) production in vitro and in vivo. Results revealed that luteolin 5-O-glucoside dose-dependently inhibited NO production and expression of iNOS and COX-2 in LPS-induced RAW 264.7 cells. Luteolin 5-O-glucoside also significantly inhibited the translocation of $NF-{\kappa}B$, the activation of MAPKs, and ROS generation in LPS-induced RAW 264.7 cells. In addition, protein expressions of Nrf-2 and HO-1 were also upregulated by luteolin 5-O-glucoside treatment. Moreover, luteolin 5-O-glucoside inhibited ${\lambda}-carrageenan-induced$ mouse paw edema by 65.34% and 48.31% at doses of 50 and 100 mg/kg body weight, respectively. These findings indicate potential anti-inflammatory effect of luteolin 5-O-glucoside particularly by downregulating $NF-{\kappa}B$ and upregulating HO-1/Nrf-2 pathway.