• Title/Summary/Keyword: nitric oxide/cGMP signaling

Search Result 22, Processing Time 0.022 seconds

Study on the Mechanism of Vascular Relaxation of Ethanol Extract of Persicaria Perfoliata H. Gross (하백초 에탄올 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Choi, Byung-Sun;Choi, Eun-Hee;Cui, Hao-Zhen;Kang, Dae-Gill;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.389-396
    • /
    • 2009
  • The ethanol extract of Persicaria perfoliata (EPP) induced relaxation of the phenylephrine-precontracted aorta in a dose-dependent manner, which was abolished by removal of functional endothelium. Pretreatment of the aortic tissues with NG-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4}-oxadiazole-[4,3-${\alpha}$)-quinixalin-1-one (ODQ) inhibited the relaxation induced by EPP. However, EPP-induced relaxation was not blocked by pretreatment with indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolol. Incubation of endothelium-intact thoracic aortic ring with EPP increased the production of cGMP, which was also blocked by pretreatment with L-NAME or ODQ. These results suggest that EPP dilates vascular smooth muscle via endothelium-dependent NO/cGMP signaling.

Xylazole inhibits NO-cGMP pathway in fetal rat nerve cells

  • Wang, Xinyu;Wu, Yue;Liu, Lin;Bai, Hui;Zhang, Zhiheng;Zhao, Mingchao;Ma, Tianwen;Song, Xiaopeng;Jia, Lina;Lv, Liangyu;Yu, Yue;Xu, Xinyu;Chen, Hong;Gao, Li
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.16.1-16.13
    • /
    • 2022
  • Background: Xylazole (Xyl) is a veterinary anesthetic that is structurally and functionally similar to xylazine. However, the effects of Xyl in vitro remain unknown. Objectives: This study aimed to investigate the anesthetic mechanism of Xyl using fetal rat nerve cells treated with Xyl. Methods: Fetal rat nerve cells cultured for seven days were treated with 10, 20, 30, and 40 ㎍/ mL Xyl for 0, 5, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min. Variations of amino acid neurotransmitters (AANTs), Nitric oxide-Cyclic GMP (NO-cGMP) signaling pathway, and ATPase were evaluated. Results: Xyl decreased the levels of cGMP and NO in nerve cells. Furthermore, Xyl affected the AANT content and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity in nerve cells. These findings suggested that Xyl inhibited the NO-cGMP signaling pathway in nerve cells in vitro. Conclusions: This study provided new evidence that the anesthetic and analgesic effects of Xyl are related to the inhibition of the NO-cGMP signaling pathway.

Phospholipase C-mediated vasorelaxing action of melatonin in rat isolated aorta (흰쥐 대동맥에서 phospholipase C를 경유한 melatonin의 혈관 이완 작용)

  • Kim, Shang-Jin;Baek, Sung-Soo;Kang, Hyung-Sub;Kim, Jin-Shang
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.507-515
    • /
    • 2005
  • Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. However, the effects of melatonin on vascular tissues are still vague. The aim of this study was to assess the relationship between phospholipase C (PLC) and nitric oxide synthase (NOS)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling cascade in the relaxatory action of melatonin in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in phenylephrine (PE)- and KCl-precontracted endothelium intact (+E) aortic rings. In KCl-precontracted +E aortic rings, the melatonin-induced vasorelaxation was not inhibited by endothelium removal or by pretreatment with NOS inhibitors, L-$N^G$-nitor-arginine (L-NNA) and L-$N^G$-nitor-arginine methyl ester (L-NAME), guanylate cyclase (GC) inhibitors, methylene blue (MB) and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxation was inhibited by endothelium removal or by pretreatment with L-NNA, L-NAME, MB, ODQ and 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC). Moreover, in without endothelium (-E) aortic rings and in the presence of L-NNA, L-NAME, MB and ODQ in +E aortic rings, the melatonin-induced residual relaxations and residual contractile responses to PE were not affected by NCDC, a PLC inhibitor. It is concluded that melatonin can evoke vasorelaxation due to inhibition of PLC pathway through the protein kinase G activation of endothelial NOS/cGMP signaling cascade.

Effects of Schisandra chinensis fruit extract and gomisin A on the contractility of penile corpus cavernosum smooth muscle: a potential mechanism through the nitric oxide - cyclic guanosine monophosphate pathway

  • Choi, Bo Ram;Kim, Hye Kyung;Park, Jong Kwan
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.291-297
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: This study evaluated the effects and molecular mechanisms of the Schisandra chinensis fruit extract (SC) and its major compound gomisin A (GA), on the contractility of rabbit penile corpus cavernosum smooth muscle (PCCSM). MATERIALS/METHODS: PCCSM was exposed to SC or GA after appropriate pretreatment with nitric oxide synthase (NOS) blocker, guanylate cyclase blocker, adenylyl cyclase blocker or protein kinase A blocker. Subsequently, we evaluated the cyclic nucleotide in the perfusate by radioimmunoassay, protein expression level of neuronal NOS (nNOS) and endothelial NOS (eNOS) by western blot, and the interaction of SC or GA with udenafil and rolipram. RESULTS: Both SC and GA induce PCCSM relaxations in a concentration-dependent manner. Pretreatment with NOS blocker, guanylate cyclase blocker, adenylyl cyclase blocker or protein kinase A blocker result in significantly decreased relaxation. SC and GA also induce the levels of cyclic nucleotide in the perfusate in a concentration-dependent manner. Perfusion with GA also showed significantly higher levels of eNOS protein. Furthermore, the udenafil and rolipram induced relaxations of PCCSM were enhanced after exposure to SC and GA. Our results indicate that SC and GA induce the relaxation of PCCSM via the nitric oxide (NO)-cGMP and cAMP signaling pathways. CONCLUSIONS: The SC and GA are potential alternative treatments for men who want to consume natural products to ameliorate erectile function, or who do not respond to the commercially available medicines.

Mechanism for the Vascular Relaxation Induced by Butanol Extract of Agrimonia pilosa (선학초 부탄올 추출물의 혈관 이완 효과의 기전에 대한 연구)

  • Hua, Cao-Li;Lee, Jun-Kyung;Cho, Kuk-Hyun;Kwon, Tae-Oh;Kwon, Ji-Woong;Kim, Jin-Sook;Sohn, Eun-Jin;Lee, Ho-Sub;Kang, Dae-Gill
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.2 s.145
    • /
    • pp.67-73
    • /
    • 2006
  • The butanol extracts of Agrimonia pilosa (BAP) induced dose-dependent vascular relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) and 1H-[1,2,4]-oxadiazole-[$4,3-{\alpha}$]-quinoxalin-1-one(ODQ) inhibited the relaxation induced by BAP. BAP-induced vascular relaxation was also markedly attenuated by addition of verapamiI, while the relaxant effect of BAP was not blocked by indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolo. In addition, incubation of endothelium-intact aortic rings with BAP increased the vascular production of cGMP. These results suggest that BAP relaxes vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling pathway, which may be causally related with L-type $Ca^{2+}$ channels.

Effect of Lophatherum gracile on the mechanism of vasorelaxation in thoracic aorta (담죽엽 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Li, Xiang;Lee, Yun-Jeong;Seo, Hwan-Ho;Cho, Nam-Geun;Kang, Dae-Gill;Lee, Ho-Sub
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • The vasorelaxant effect of an extract of Lophatherum gracile Brongn (ELB) and its possible action mechanism were ascertained in aortic tissues isolated from rats. ELB relaxed endothelium-intact thoracic aorta in a dose-dependent manner. However, the induced vascular relaxation was abolished by removal in endothelium of the thoracic aorta. Pretreatment of endothelium-intact vascular tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-$\alpha$]-quinoxalin-1-one (ODQ) significantly inhibited vascular relaxation induced by ELB. Moreover, ELB significantly increased cGMP production in aortic tissues, which was blocked by pretreatment with L-NAME or ODQ. The vasorelaxant effect of ELB was attenuated by tetraethylammonium (TEA), and glibenclamide. ELB-induced vasorelaxation was not blocked by atropine, propranolol, indomethacin, verapamil, and diltiazem. Taken together, the present study demonstrates that ELB dilates vascular smooth muscle via an endothelium-dependent NO-cGMP signaling pathway, which may be at least in part related with the function of $K^+$ channels.

  • PDF

Study on the Mechanism of Vascular Relaxation Induced by Cortex Caryphylli (정향피 추출물의 혈관 이완효과 및 작용기전에 대한 연구)

  • Song, Chul-Min;Shin, Sun-Ho;Jung, Hyun-Ae;Lee, Jun-Kyoung;Cao, Li-Hua;Kang, Dae-Gil;Lee, Ho-Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1166-1173
    • /
    • 2006
  • The aqueous extracts of Cortex Caryophylli (AEC) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with N$^G$_nitro-L-arginine methyl ester (L-NAME) or 1 H-[1,2,4]-oxadiazole-[4,3-${\alpha}$l-quinoxalin-1-one (ODQ) inhibited the relaxation induced by AEC. AEC-induced vascular relaxations were also markedly attenuated by addition of verapamil, diltiazem and glibenclamide, tetraethylammonium (TEA), respectively, while the relaxation effect of AEC was not blocked by indomethacin, atropine, or propranolol. Moreover, incubation of endothelium-intact aortic rings with AEC increased the production of cGMP. These results suggest that AEC dilates vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling, which seems to be causally related with L-type Ca$^{2+}$ and K$^+$ channels.

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Kim, Hyun Jung;Ha, Ki-Tae;Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.

Study on the Mechanism of Vascular Relaxation of Methanol Extract of Rose multiflora Radix (장미근(薔薇根) 메탄올 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Dae-Joong;Jo, Nam-Geun;Lee, Jun-Kyoung;Cao, Li-Hua;Lee, Hyuck;An, Jung-Seok;Um, Jae-Yeon;Joe, Gye-One;Na, Han-Il;Kyung, Eun-Ho;Kang, Dae-Gil;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.408-413
    • /
    • 2007
  • Vascular tone plays an important role in the regulation of blood pressure. In the present study, the methanol extract of Rosae multiflora Radix (MRM) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with $N^G$-nitro-L-arginine methly ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-${\alpha}$]-quinoxalin-1-one (ODQ) inhibited the relaxation induced by MRM, respectively. But, the relaxation effect of MRM was not blocked by indomethacine, glibenclamide, tetraethylammonium (TEA), verapamil, diltiazem, atropine, and propranolol, respectively. Moreover, incubation of endothelium-intact aortic rings with MRM increased the production of cGMP. Taken together, the present results suggest that MRM relaxes vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling. These results would be useful for further study to MRM on animal models with cardiovascular diseases.

Mechanism of the relaxant action of imipramine in isolated rat aorta (흰쥐 대동맥에서 imipramine의 혈관이완 작용기전)

  • Kang, Hyung-sub;Lee, Sang-woo;Baek, Sung-su;Joe, Sung-gun;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.597-606
    • /
    • 2003
  • Although the antidepressant effects of imipramine (IMI) have been well known in several studies, the effects on cardiovascular system, particularly the vasorelaxant effects, have not known clearly. We hypothesis that IMI-induced vasorelaxation involves NO (nitrie oxide), activation of guanylate cyclase (GC) and $Ca^{2+}$ channel. The possible roles of the endothelium and $Ca^{2+}$ in IMI-induced responses were investigated using isolated rings of rat thoracic aorta and anesthesized rats. In KCl-precontracted rings. IMI produces endothelium-dependent and endothelium-independent relaxations in intact (+E) as well as endothelium-denuded (-E) rat aorta in a concentration-dependent manner. In phenylephrine (PE)-precontracted rings, the IMI-induced relaxation was significantly greater in +E rings. The IMI-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, a non-selective GC inhibitor, methylene blue, $Na^+$ channel blockers, lidocaine and procaine, or $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings, but not in PE-precontracted -E rings. These relaxations were also suppressed by lidocaine or procaine in -E aortic rings. However, IMI-induced relaxations were not inhibited by a PLC inhibitor 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC), an inositol monophosphatase inhibitor, lithium, indomethacin and dexamethasone in +E and -E rings. In vivo, infusion of IMI elicited significant decrease in arterial blood pressure. After intravenous injection of saponin, NOS inhibitors. MB and nifedipine, infusion of IMI inhibited the IMI-lowered blood pressure markedly. These findings suggest that the endothelium-dependent relaxation induced by IMI is mediated by activation of NO/cGMP signaling cascade or inhibition of $Ca^{2+}$ entry through voltage-gated channel, and this mechanism may contribute to the hypotensive effects of IMI in rats.