Phospholipase C-mediated vasorelaxing action of melatonin in rat isolated aorta

흰쥐 대동맥에서 phospholipase C를 경유한 melatonin의 혈관 이완 작용

  • Kim, Shang-Jin (Bio-Safety Research Institute, Chonbuk National University) ;
  • Baek, Sung-Soo (Bio-Safety Research Institute, Chonbuk National University) ;
  • Kang, Hyung-Sub (Bio-Safety Research Institute, Chonbuk National University) ;
  • Kim, Jin-Shang (Bio-Safety Research Institute, Chonbuk National University)
  • 김상진 (전북대학교 생체안전성연구소) ;
  • 백성수 (전북대학교 생체안전성연구소) ;
  • 강형섭 (전북대학교 생체안전성연구소) ;
  • 김진상 (전북대학교 생체안전성연구소)
  • Accepted : 2005.11.22
  • Published : 2005.12.29

Abstract

Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. However, the effects of melatonin on vascular tissues are still vague. The aim of this study was to assess the relationship between phospholipase C (PLC) and nitric oxide synthase (NOS)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling cascade in the relaxatory action of melatonin in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in phenylephrine (PE)- and KCl-precontracted endothelium intact (+E) aortic rings. In KCl-precontracted +E aortic rings, the melatonin-induced vasorelaxation was not inhibited by endothelium removal or by pretreatment with NOS inhibitors, L-$N^G$-nitor-arginine (L-NNA) and L-$N^G$-nitor-arginine methyl ester (L-NAME), guanylate cyclase (GC) inhibitors, methylene blue (MB) and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxation was inhibited by endothelium removal or by pretreatment with L-NNA, L-NAME, MB, ODQ and 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC). Moreover, in without endothelium (-E) aortic rings and in the presence of L-NNA, L-NAME, MB and ODQ in +E aortic rings, the melatonin-induced residual relaxations and residual contractile responses to PE were not affected by NCDC, a PLC inhibitor. It is concluded that melatonin can evoke vasorelaxation due to inhibition of PLC pathway through the protein kinase G activation of endothelial NOS/cGMP signaling cascade.

Keywords

References

  1. Benitez-King G, Rios A, Martinez A, Anton-Tay F. In vitro inhibition of $Ca^{2+}$/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1996, 1290, 191-196 https://doi.org/10.1016/0304-4165(96)00025-6
  2. Bitman EL, Karsch EJ. Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe. Biol Repord 1984, 30, 585-593 https://doi.org/10.1095/biolreprod30.3.585
  3. Bosman H, Dormehl IC, Hugo N, Redelinghuys IF, Theron JJ. The effect of intravenous administration of melatonin on cardiovascular parameters of the baboon (Papio ursinus). J Pineal Res 1991, 11, 179-181 https://doi.org/10.1111/j.1600-079X.1991.tb00476.x
  4. Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 2000, 184, 409-420 https://doi.org/10.1002/1097-4652(200009)184:3<409::AID-JCP16>3.0.CO;2-K
  5. Cauvin C, Loutzenhiser R, Van Breemen C. Mechanism of calcium-antagonist induced vasodilation. Annu Rev Pharmacol 1983, 23, 373-396 https://doi.org/10.1146/annurev.pa.23.040183.002105
  6. Chuang JI, Chen SS, Lin MT. Melatonin decreases brain serotonin release, arterial pressure and heart rate in rats. Pharmacology 1993, 47, 91-97 https://doi.org/10.1159/000139083
  7. Cunnane SC, Manku MS, Oka M, Horrobin DP. Enhanced vascular reactivity to various vasoconstrictor agents following pinealectomy in the rat: role of melatonin. Can J Physiol Pharmacol 1980, 58, 287-293 https://doi.org/10.1139/y80-049
  8. Dart AM, Kingwell BA. Pulse pressure-a review of mechanisms and clinical relevance. J Am Coll Caridiol 2001, 37, 975-984 https://doi.org/10.1016/S0735-1097(01)01108-1
  9. Doolen S, Krause DN, Dubocovich ML, Duckles SP. Melatonin mediates two distinct responses in vascular smooth muscle. Eur J Pharmacol 1998, 345, 67-69 https://doi.org/10.1016/S0014-2999(98)00064-8
  10. Faillace MP, Keller Sarmiento MI, Rosenstein RE. Melatonin effect on the cyclic GMP system in the golden hamster retina. Brain Res 1996, 711, 112-117 https://doi.org/10.1016/0006-8993(95)01405-5
  11. Geary GG, Krause DN, Duckles SP. Melatonin directly constricts rat cerebral arteries through modulation of potassium channels. Am J Physiol 1997, 273, 1530-1536
  12. Girouard H, Chulak C, Lejossec M, Lamontagne D Lamontagne D, De Champlain J. Vasorelaxant effects of the chronic treatment with melatonin on mesenteric artery and aorta of spontaneously hypertensive rats. J Hypertens 2001, 19, 1369-1377 https://doi.org/10.1097/00004872-200108000-00004
  13. Godson C, Reppert SM. The Mella melatonin receptor is coupled to parallel signal transduction pathways. Endocrinology 1997, 138, 397-404 https://doi.org/10.1210/en.138.1.397
  14. Holmes SW, Sugden D. The effect of melatonin on pinealectomy-induced hypertension in the rat. Br J Pharmacol 1976, 56, 360-361
  15. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 1997, 49, 157-230
  16. Kawashima K, Miwa Y, Fujimoto K, Oohata H, Nishino H, Koike H. Antihypertensive action of melatonin in the spontaneously hypertensive rat. Clin Exp Hypertens 1987, 9, 1121-1131 https://doi.org/10.3109/10641968709160037
  17. Kilic E, Ozdemir YG, Bolay H, Kelestimur H, Dalkara T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab 1999, 19, 511-516 https://doi.org/10.1097/00004647-199905000-00005
  18. Lusardi P, Piazza E, Fogari R. Cardiovascular effects of melatonin in hypertensive patients well controlled by nifedipine: a 24-hour study. Br J Clin Pharmacol 2000, 49, 423-427 https://doi.org/10.1046/j.1365-2125.2000.00195.x
  19. Martinuzzo M, Del Zar MM, Cardinali DP, Carreras LO, Vacas MI. Melatonin effect on arachidonic acid metabolism to cyclooxygenase derivatives in human platelets. J Pineal Res 1991, 11, 111-115 https://doi.org/10.1111/j.1600-079X.1991.tb00465.x
  20. McLellan TM, Gannon GA, Zamecnik J, Gil V, Brown GM. Low doses of melatonin and diurnal effects on thermoregulation and tolerance to uncompensable heat stress. J Appl Physiol 1999, 87, 308-316
  21. Nakajima T, Hazama H, Hamada E, Wu SN, Igarashi K, Yamashita T, Seyama Y, Omata M, Kurachi Y. Endothelin-1 and vasopressin activate $Ca^{2+}$-permeable non-selective cation channels in aortic smooth muscle cells: mechanism of receptor-mediated $Ca^{2+}$ influx. J Mol Cell Cardiol 1996, 28, 707-722 https://doi.org/10.1006/jmcc.1996.0066
  22. Okatani Y, Wakatsuki A, Watanabe K, Taniguchi K, Fkaya T. Weak vasoconstrictor activity of melatonin in human umbilical artery: relation to nitric oxidescavenging action. Eur J Pharmacol 2001, 417, 125-129 https://doi.org/10.1016/S0014-2999(01)00802-0
  23. Pozo D, Reiter RJ, Calvo JR, Guerrero JM. Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 1997, 65, 430-442 https://doi.org/10.1002/(SICI)1097-4644(19970601)65:3<430::AID-JCB12>3.0.CO;2-J
  24. Pozo D, Reiter RJ, Calvo JR, Guerrero JM. Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 1994, 55, 455-460 https://doi.org/10.1016/0024-3205(94)90057-4
  25. Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991, 12, 151-180 https://doi.org/10.1210/edrv-12-2-151
  26. Reiter RJ, Calvo JR, Karbownik M, Oi W, Tan DX. Melatonin and its relation to the immune system and inflammation. Ann N Y Acad Sci 2000, 917, 376-386 https://doi.org/10.1111/j.1749-6632.2000.tb05402.x
  27. Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res 2003, 58, 10-19 https://doi.org/10.1016/S0008-6363(02)00827-1
  28. Satake N, Oe H, Shibata S. Vasorelaxing action of melatonin in rat isolated aorta; possible endothelium dependent relaxation. Gen Pharmacol 1991, 22, 1127-1133 https://doi.org/10.1016/0306-3623(91)90589-X
  29. Satake N, Sawada HOT, Shibata S. The mode of vasorelaxing action of melatonin in rabbit aorta. Gen Pharmacol 1991, 22, 219-221 https://doi.org/10.1016/0306-3623(91)90435-9
  30. Satake N, Shibata S, Takagi T. The inhibitory action of melatonin on the contractile response to 5-hydroxytryptamine in various isolated vascular smooth muscles. Gen Pharmacol 1986, 17, 553-558 https://doi.org/10.1016/0306-3623(86)90092-3
  31. Somlyo AP, Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J 1989, 3, 2266-2276
  32. Underwood H, Goldman BD. Vetebrate circadian and photoperiodic system: role of the pineal gland and melatonin. J Biol Rhythms 1987, 2, 279-315 https://doi.org/10.1177/074873048700200404
  33. Vanecek J. Cellular mechanisms of melatonin action. Physiol Rev 1998, 78, 687-720
  34. Weekley B. Effects of melatonin on isolated pulmonary artery and vein; role of vascular endothelium. Pulm Pharmacol 1993, 6, 149-154 https://doi.org/10.1006/pulp.1993.1019
  35. Weekley B. Pharmacologic studies on the mechanism of melatonin-induced vasorelaxation in rat aorta. J Pineal Res 1995, 19, 133-138 https://doi.org/10.1111/j.1600-079X.1995.tb00182.x