• Title/Summary/Keyword: nitrate concentration

Search Result 1,012, Processing Time 0.032 seconds

Surface Characterization of Al Coated Steel Treated with Cerium Nitrate (Ce화합물로 표면처리한 Al도금강판의 표면 분석 연구)

  • Lee, Do-Hyung
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.494-498
    • /
    • 2001
  • In this study, cerium nitrate was used as an alternative to chromate for the surface-treatment of Al coated steel to improve the corrosion resistance. The surface of Al coated steel was characterized by means of a X-ray photoelectron spectroscopy(XPS). It was found that cerium on the surface of Al coated steel had a mixture of oxidation states such as Ce(+4) and Ce(+3), and the relative concentration of each state was 57 % and 43 %, respectively. The surface film consisting of these cerium compounds played an important role for achieving the corrosion resistance of Al coated steel.

  • PDF

Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan

  • Shimadera, Hikari;Hayami, Hiroshi;Chatani, Satoru;Morikawa, Tazuko;Morino, Yu;Mori, Yasuaki;Yamaji, Kazuyo;Nakatsuka, Seiji;Ohara, Toshimasa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.139-152
    • /
    • 2018
  • The urban model inter-comparison study (UMICS) was conducted in order to improve the performance of air quality models (AQMs) for simulating fine particulate matter ($PM_{2.5}$) in the Greater Tokyo Area of Japan. UMICS consists of three phases: the first phase focusing on elemental carbon (UMICS1), the second phase focusing on sulfate, nitrate and ammonium (UMICS2), and the third phase focusing on organic aerosol (OA) (UMICS 3). In UMICS2/3, all the participating AQMs were the Community Multiscale Air Quality modeling system (CMAQ) with different configurations, and they similarly overestimated $PM_{2.5}$ nitrate concentration and underestimated $PM_{2.5}$ OA concentration. Various sensitivity analyses on CMAQ configurations, emissions and boundary concentrations, and meteorological fields were conducted in order to seek pathways for improvement of $PM_{2.5}$ simulation. The sensitivity analyses revealed that $PM_{2.5}$ nitrate concentration was highly sensitive to emissions of ammonia ($NH_3$) and dry deposition of nitric acid ($HNO_3$) and $NH_3$, and $PM_{2.5}$ OA concentration was highly sensitive to emissions of condensable organic compounds (COC). It was found that $PM_{2.5}$ simulation was substantially improved by using modified monthly profile of $NH_3$ emissions, larger dry deposition velocities of $HNO_3$ and $NH_3$, and additionally estimated COC emissions. Moreover, variability in $PM_{2.5}$ simulation was estimated from the results of all the sensitivity analyses. The variabilities on CMAQ configurations, chemical inputs (emissions and boundary concentrations), and meteorological fields were 6.1-6.5, 9.7-10.9, and 10.3-12.3%, respectively.

The removal of Nitrate-nitrogen from ground water by electrodialysis (전기투석을 이용한 지하수 중의 질산성질소 제거)

  • Min, Ji-Hee;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.307-314
    • /
    • 2008
  • In this study, the effects of applied voltage, solution pH and coexistence of other ions such as sulfate ion (${SO_4}^{2-}$) and chloride ion ($Cl^-$) were investigated on the removal of nitrate-nitrogen ($NO_3{^-}-N$) from ground water by electrodialysis. The examined operating conditions were evaluated for optimizing the removal efficiency of $NO_3{^-}-N$. Real ground water samples taken from a rural area of Yongin city and artificial ones with components similar to the real ground water were tested for the study, which contained $NO_3{^-}-N$ concentration of 17mg/L that exceeds current drinking water quality standard of 10 mg/L. The increase in the removal rate of $NO_3{^-}-N$ was observed as the applied voltage increased from 5V to 30V, while no significant increase in the removal rate appeared at the applied voltage beyond 20V during a given operating time. The removal rate appeared to get lower at both acidic and basic condition, compared to neutral pH. Coexistence of of ${SO_4}^{2-}$and $Cl^-$ demanded much longer operating time to achieve a given removal rate or to meet a certain level of treated water concentration. When nitrate ion was combined with ${SO_4}^{2-}$and $Cl^-$, the removal rate was reduced by 4.29% and 10.83%, respectively.

A Study on the ZnO Anti-reflection Layer of Dye Sensitized Solar Cell using Zinc Nitrate Solution (Zinc nitrate 용액을 이용한 염료감응형 태양전지 반사 방지막에 관한 연구)

  • Choi, Jin-Ho;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Soo-Kyoung;Kim, Byung-Man;Kim, Hee-Je;Prabakar, Kandasamy;Kim, Jong-Rak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.705-710
    • /
    • 2012
  • An anti-reflection layer (AR) is used in the solar cell to improve the amount of the irradiated light, resulting in the improvement of the performance of the solar cell. In this study, the zinc oxide (ZnO) AR is applied to the dye-sensitized solar cell (DSC) by using zinc nitrate solution. The conditions such as solution concentration and sintering temperature for fabricating the ZnO AR are changed to optimize the performance of the AR. As a result, the best performance is shown when the zinc nitrate solution with 100mM concentration is used and the sintering temperature is $600^{\circ}C$. And then, the ZnO AR formed with these optimal conditions is applied to the DSC. Consequently, a DSC with a ZnO AR had an increased current density up to 13.86$mA/cm^2$ and an enhanced efficiency of 6.32%.

Changes of Ascorbic Acid and Nitrate Content in Lettuce by Unbalanced Nutrient Solution

  • Park, Yang-Ho;Park, So-Hyeon;Park, Jae-Hong;Lee, Ju-Young;Jang, Byoung-Choon;Lee, Ki-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.107-111
    • /
    • 2006
  • This study was to verity that the uptake inhibition and accumulation of nitrogen in different potassium levels. Lettuce was used as model plant in this study and grown in pot of 10cm's in diameter and depth with mixture media of vermiculite and perlite under supply of different culture solution for three weeks. Nitrogen absorption at root was inhibited by increased potassium concentration in nutrient solution, and nitrate accumulation of plant was depended on absorption of nitrogen because nitrate content of 0 K level was 4-5 times higher than that of 2 K level, Concentration of ascorbic acid was decreased by increasing the nitrogen absorption, since ascorbic acid (AsA) content of 2K level was higher than those of OK level in both of old leaf and flesh leaf.

Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF

Fluoride and nitrate removal in small water treatment plants using electro-coagulation (전기응집을 이용한 소규모 수도시설의 질산성질소와 불소이온 제거)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.767-775
    • /
    • 2011
  • In this study we verified if the electro-coagulation process can treat properly the nitrate and fluoride that are not removed well in the conventional small water treatment plants which usually employ chlorination and filtration only. As we gave a change of electrode material and gap-distance between electrodes, removal efficiency of the nitrate and fluoride was determined by electro-coagulation process which were equipped with aluminum and stainless steel (SUS304) electrodes. In addition, electrode durability was investigated by determination of electrodes mass change during the repetitive experiments. Removal efficiency was great when aluminum was used as an anode material. Nitrate removals increased as electric density and number of electrodes increased, but fluoride removal was less sensitive to both parameters than nitrate. After 10 minutes of contact time with the current density from $1{\times}10^{-3}$ to $3{\times}10^{-3}A/cm^{2}$, nitrate and fluoride concentration ranged from 9.2 to 1.2mg/L and from 0.02 to 0.01mg/L, which satisfied the regulation limits. Regardless of the repeating number of experiments, removal efficiency of both ions were almost similar and the change of electrode mass ranged within ${\pm}$0.5%, indicating that the loss of the electrode mass is not so much great under the limited circumstances.

Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system (2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성)

  • Lee, Moo-Jae;Park, Sang-Min;Jun, Hang-Bae;Kim, Kong-Soo;Lim, Jeoung-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.

Variation in Nitrate Contamination of Shallow Groundwater in a Farmland in Gyeonggi-do, Korea (경기도 지역 농경지의 천부 지하수 내 질산염 오염특성과 변화)

  • Lee, Eun-Jae;Woo, Nam-Chil;Lee, Byung-Sun;Kim, Yang-Bin
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.393-403
    • /
    • 2008
  • Hydrogeochemistry of groundwater was studied in order to identify the influence of cow manure, distributed to a farmland as organic fertilizer, on nitrate concentrations in shallow groundwater and its spatio-temporal variations. From monitoring wells, water levels were measured using automatic data loggers, and water samples collected and analyzed in Feb., April, June and Oct. 2007. The average electric conductivity and concentration of nitrate in the groundwater show the highest levels in April and decline in subsequent sampling times. Decreases in dissolved oxygen(DO) and nitrate concentrations from April to Oct. and corresponding increases in $HCO_3$ concentrations indicate denitrification processes by microorganisms. Spatial variation of nitrate concentration appeared to be affected by the redox conditions of groundwater controlled by geochemical reactions of Mn, Fe and DOC contents.

Protective Effects of Chemical Drugs on the Course of Uranium-induced Acute Renal Failure (우라늄오염에 의한 신부전증에 미치는 제염제의 방호효과)

  • Kim, Tae-Hwan;Chung, In-Yong;Kim, Sung-Ho;Kim, Kyeng-Jung;Bang, Hyo-Chang;Yoo, Seong-Yul;Chin, Soo-Yil
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.27-39
    • /
    • 1990
  • Appreciable radiation exposures certainly were occurred in the reactor burn-up, the nuelear fall-out and the surroundings of nuclear installations with radioactive effluents. Therefore, radioactive nuclides is not only potentially hazardous to workers of nuclear power plants and related industrials, but also the wokers who handle radioactive nuclides in biochemical research and nuclear medicine diagnostics. And in the case of occurring the nuclear accidents, the early medical treatment of radiation injury should be necessary but little is established medical procedures to decontaminate the victims of internal contamination of radioactive nuclides in korea. Accordingly, to achieve the basic data for protective roles and medical treatment of radiation injury, the present studies were carrid out to evaluate the decontamination of uranium by the chemical drugs. The results observed were summarized as follows: 1. The combined treatmet group of sodium bicarbonate and saline with uranyl nitrate injection simultaneously and the dithiothreitol group that was administered 30 minutes after uranyl nitrate injection were increased significantly in the change of body weight than uranyl nitrate-only group (P<0.005). 2. All the experimental groups were increased the fluid intake and urine volume on the uranyl nitrate-induced acute renal failure. but the combined treatment group of sodium bicarbonate and saline with uranyl nitrate injection simultaneously and the dithiothreitol group that was administered 30 minutes after uranyl nitrate injection have the higher increment of fluid intake and urine volume (P<0.05). 3. When sodium bicarbonate and saline was treated with uranyl nitrate injection simultaneously. and dithiothreitol was administered 30 minutes after uranyl nitrate injection. there was significantly reduced in BUN concentration (P<0.01). 4. When dithiothreitol was administered 30 minutes after uranyl nitrate injection. there was reduced more significantly on the increment of serum creatinine concentration than that observed in uranyl nitrate-only group(P<0.01). but when the combined treatment of sodium bicarbonate and saline with uranyl nitrate simultaneously, there was still. albeit much less marked. decrease in serum creatinine concentration. 5. The sodium bicarbonate and saline was treated with uranyl nitrate simultaneously and dithiothreitol was administered at 30 minutes after uranyl nitrate were excreted markedly higher urine creatinine concentration than the uranyl nitrate-only group. 6. Uranyl nitrate has been used in experimental animals to produce hydropic degeneration and swelling of proximal tubules, disappearance of microvilli and brush border or necrosis in the kidney and centrilobular necrosis, congestion, and telangiectasia of the liver. When the sodium bicarbonate and saline was treated with uranyl nitrate simultaneously, and dithiothreitol was administered. 30 minutes after uranyl nitrate, there was more marked the protective effect than uranyl nitrate-only group. Finally, if the sodium bicarbonate and saline may administered as quickly as possible each time that some risk for internal contamination, with uranium, and dithiothreitol is administered 30 minutes after uranium contamination, there ameliorates the course of uranyl nitrate-induced acute renal failure.and this effect is assocciated with prevention of uranium (heavy metal)-induced alterations in BUN, serum creatinine, urine creatinine, fluid intake, urine volume and body weight.

  • PDF