• Title/Summary/Keyword: nitrate(${NO_3}^-$)

Search Result 1,066, Processing Time 0.035 seconds

A Study on the Formation of Nitrate in the Atmosphere (환경 대기중 Nitrate의 생성에 관한 연구)

  • 천만영;강공언;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.68-73
    • /
    • 1992
  • A study on the formation of particulate nitrate$(NO_3^-)$ and gaseous nitrate$(HNO_3)$ in the atmosphere was carried out in Seoul from Oct 8 to 11 1991. To collect $NO_3^-$ and $HNO_3$ in the ambient air, dual filter pack sampler (47mm$\phi$) was used. In the dual filter pack sampler, the first filter was Teflon filter (poresize 1$\mum$) for collection of $NO_3^-$ and the second filter was Nylon filter (poresize 0.45 $\mum$) for $HNO_3$. Particulate nitrate$(NO_3^-)$ and Sulfate ions were analysed by Ion chromatography. $HNO_3$ concentration was higher in the day time $(9.93\mug/m^3)$ than the night time$(3.50\mug/m^3)$, and Particulate nitrate$(NO_3^-)$ concentration was higher in the night time and early morning$(6.21\mug/m^3)$ than the day time$(4.31\mug/m^3)$. The conversion rate of $NO_x$ to total nitrate$(NO_3^-, HNO_3)$ was 7.57%/hr in the day time and 4.79%/hr in the night time, and total average conversion rate was 5.60%/hr.

  • PDF

Response of Nodulation and Leaf Nitrate Reductase Activity of Alfalfa to Exogeneous Nitrate Supply (질산태 질소 공급이 알팔파의 뿌리혹 형성 및 엽중 Nitrate Reductase 활성에 미치는 영향)

  • 이석하;황석중
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.2
    • /
    • pp.196-200
    • /
    • 1993
  • A full understanding of the interdependence of leaf nitrate (($No_3$ ̄) metabolism and symbiotic nitrogen($N_2$) fixation in legume crops is needed to help maximize the use of both N sources as well as to improve forage quality through the inhibition of leaf nitrate accumulation. The present work examines the effects of added nitrate, the level of which are 0,2,4,8 and 12mM, on the nodule formation and leaf nitrate utilization and on the possibility of inducing nitrate-toxicity to livestocks in two alfalfa varieties, ' Vernal ' of grazing type and ' Victoria ' of hay type. Higher level of exogeneous nitrate resulted in the increased above-ground dry weight. Nodulation was inhibited severely when more than 8mM NO$_3$ ̄ was supplied to alfalfa plants, and leaf nitrate reductase reached a maximunm at 4mM nitrate supply. The $V_{max}$of nitrate reductase in leaves of Vernal was similar to that of Victoria, whereas the $K_m$ of Vernal was higher than that of Victoria. High accumulation of leaf nitrate, $4{\times}10^{-5}$ g/g leaf fresh weight, was shown at 12mM nitrate supply, which was thought to be not enough to induce nitrate-toxicity to livestocks.icity to livestocks.

  • PDF

Physiological Adaptation of Nitrate Uptake by Phytoplankton Under Simulated Upwelling Conditions (모의 용승조건하에서 식물 플랑크톤 질산염 흡수기작의 생리적 적응)

  • YANG Sung Ryull
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.782-793
    • /
    • 1997
  • To study the physiological adaptation (shift-up) of phytoplankton under the simulated upwelling conditions, nitrate uptake capacity of Dunaliella tertiolecta batch culture was measured in the laboratory using the stable isotope $^{15}N-KNO_3$. Contrary to the expected, there was no significant relationship between the maximum $V_{NO3}$ (nitrogen specific nitrate uptake rate) and the initial nitrate concentration. However, there was a strong relationship between the maximum $\rho_{NO3}$ (nitrate transport rate) and the initial nitrate concentration of $<25\;{\mu}M$, which was also influenced by the physiological status of the culture. The increase in $V_{NO3}$ was mainly due to the increase in PON (particulate organic nitrogen) concentration and partly due to the increase in $V_{NO3}$. When the phytoplankton population was severely shifted-down, the physiological adaptation of nitrate uptake was significantly inhibited at high initial nitrate concentrations. The timing of the maximum $V_{NO3}$ or $\rho_{NO3}$ was related to the initial nitrate concentration. At higher initial nitrate concentrations, maxima in $V_{NO3}$ and $\rho_{NO3}$ occurred 1 or 2 days later than at lower nitrate concentrations. This relationship was the opposite to the prediction from the shift-up model of Zimmerman et al. (1987), The shift-up process is apparently controlled by an internal time sequence and the initial nitrate concentration, but the magnitude of $V_{NO3}$ was affected little by changes in nitrate concentration.

  • PDF

Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.263-271
    • /
    • 2015
  • In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to $300mg/L\;NO_3-N$. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ${\geq}33mg\;catalyst/mg\;NO_3-N$. Maximum nitrogen selectivity (47%) was observed at $66mg\;catalyst/mg\;NO_3-N$, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg $NO_3{^-}-N/g_{catalyst}/h$. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.

Nitrate Metabolism Affected by Osmotic Stress and Nitrate Supply Level in Relation to Osmoregulation

  • Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Eight-week old perennial ryegrass (Lolium perenne L. cv. Reveille) plants were exposed to different NO3-concentrations or osmotic stress with NaCI. Previously labeled "N was chased during 14 days of non-labeled'NO3 feeding in order to investigate NO3 metabolism in relation to osmoregulation. The short termmeasurement of osmotic potential showed that the extemal concentration of Nos- had not great effect on theosmotic potential, but that osmotic adjustment was observed in NaCl-treated plants. Total uptake of NO 3 - waslargely increased by increasing supply level of NO3 while it was depressed by exposing to osmotic stress.Nitrate reduction increased to more than 29% by increasing extemal NO,- concentration from 1 mM to 10mM. When osmotically stressed with NaCI, nitrate reduction was depressed to about 37% as compared to thecontrol. The decrease in translocation of reduced N into leaves was also observed in NaCl exposed plants. Inthe medium exposed to 10 mM NO,., osmotic contribution of nitrate to cumulative osmotic potential wasdecreased, and it was osmotically compensated with soluble carbohydrate. When osmotically stressed withNaC1, the contribution of chloride was much higher than that of nitrate. The present data indicate that N03-in plant tissues, factually affected by the assimilation of this ion, plays an active role in osmotic regulation incorrelation with other osmotica such carbohydrate and chloride.(Key words : Nitrate metabolism, Osmotic stress, Nitrate supply level, Osmoregulation)ate supply level, Osmoregulation)

  • PDF

A Study on the Formation of Nitrate in Atmosphere(II) (환경 대기중에서 Nitrate의 생성에 관한 연구(II))

  • 천만영;이영재;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.216-221
    • /
    • 1993
  • This study was carried out to determine the concentration of gaseous nitrate$(HNO_3)$ particulate nitrate$(NO_3^-)$ and conversion rate of NOx to nitrate in atmosphere in Seoul from Oct 1991 to July 1992. The average concentration of gaseous nitrate in daytime(09:00 - 17:00) was 9.93, 3.37, 7.40 and 10.40$\mug/m^3$ and, in highttime was 6.21, 7.31, 4.79 and 3.86$\mug/m^3$ respectively. The concentratin of $HNO_3$ was greater in summer and daytime than winter and nighttime. But the concentration of $NO_3^-$ was greater in winter and nighttime than in summer and daytime. The average conversion rate of NOx to $HNO_3$(Fn) indaytime was 13.18, 3.78, 9.13 and 23.13% and, in nighttime was 3.06, 1.37, 1.70 and 8.72% during fall, winter, spring and summer respectively. But the average conversion rate of NOx to $NO_3^-$(Fn') in daytime was 5.79, 5.77, 2.63 and 3.90% and in nighttime was 5.95, 6.51, 3.25 and 4.84% respectively. The average conversion rate of NOx to total nitrate $(HNO_3 + NO_3^-)$(Fn') was 12.72, 7.81, 7.82 and 18.40% respectively. The average conversion rate of NOx to $HNO_3$(Fn) was greater than $NO_3^-$(Fn') about 1.6 times.

  • PDF

The Effect of Mixed Amino Acids on Nitrate Uptake and Nitrate Assimilation in Leafy Radish

  • Liu, Xing-Quan;Kim, Young-Sun;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.245-252
    • /
    • 2005
  • The objective of the present work was to determine the corresponding uptake and assimilation of ${NO_3}^-$ in roots and shoots of leafy radish by applying of mixed amino acids (MAA). The amino acids used in this experiment were alanine (Ala), ${\beta}-alanine\;({\beta}-Ala)$, aspartic acid (Asp), asparagines (Asn), glutamic acid (Glu), glutamine (Gln), and glycine (Gly). Leafy radish was grown by conventional fertilization with macro- and micronutrients under controlled conditions. The 15-day-old seedlings were treated 0, 0.3 and 3.0 mM of MAA containing 5 mM ${NO_3}^-$ in growth medium. Nitrate uptake was determined by following ${NO_3}^-$ depletion from the uptake solution. The activity of the enzymes related to the process of ${NO_3}^-$ reduction (NR: nitrate reductase; NiR: nitrite reductase; GS: glutamine synthetase) and the content of ${NO_2}^-\;and\;{ND_3}^-$ were analyzed in shoots and roots. The results of this study showed that ${NO_3}^-$ uptake was inhibited 38% with treatment of 0.3 mM of MAA. However, there was more than three times increase of N03- uptake in 3.0 mM MAA. In addition, the enzymatic activities were positively affected by the high MAA rate. Finally, the ${NO_3}^-$ content was increased slightly both in shoots and roots of leafy radish by MAA treatments.

Removal of Nitrate in River Water by Microorganisms in Saturated-Zone Soil: Laboratory-Scale Column Test (포화층 토양미생물에 의한 하천수의 nitrate 제거: 실험실규모 컬럼 실험)

  • Park, Jungyong;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.543-548
    • /
    • 2014
  • Aquifer recharge and recovery is a technology used to ensure a stable supply of clean water. During the process, river water is injected into a soil aquifer and stored. The stored water is then recovered and used to produce drinking water. It is important to understand quality improvement of the injected water while it is stored in the aquifer. In the present study, a lab-scale column reactor containing saturated-zone soil was employed to mimic an aquifer. The reactor was used to investigate microbial removal of nitrate that is a major inorganic contaminant detected in the Nakdong River. The reactor was introduced with river water that contained nitrate at concentrations (5.07, 6.81, 8.27, and 11.07 mg $NO_3{^-}/l$) detected downstream of the Nakdong River in the past 2 years. The nitrate concentrations decreased during the introduced water is retained in the reactor. Effluent from the reactor contained 1.49 mg $NO_3{^-}/l$ or less and had an average pH of 7.98 regardless of the nitrate concentrations of the influent. However abiotic control reactor showed similar nitrate-concentrations in its influent and effluent. Considering the result of abiotic control, the decreased nitrate concentration observed in the test column suggested that microorganisms in saturated-zone soil removed nitrate in the river water introduced into the reactor. Results of this study will be used to better understand microbial improvement of water quality in aquifer recharge and recovery technology.

Influence of Sewage Sludge Application on Soil Nitrate Distribution in a Clay Soil

  • Lee, Sang-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.70-73
    • /
    • 2003
  • Nitrate contamination in the aquatic systems is the primary indicator of poor agricultural management. The influence of sewage sludge application rates (0, 10, 25, 50 and 100 dry Mg/ha) on distribution of nitrate originating from the sewage sludge in soil profiles was investigated. Soil profile monitoring of nitrate was carried out with a Lakeland clay soil in 1997. Irrespectively of the sewage sludge application rates up to 50 dry Mg/ha, the concentration of $NO_3$-N at the 120 cm depth was below 10 mg/kg and the difference due to the amount of sewage sludge application was negligible at this depth. There was virtually no $NO_3$-N below 120 cm depth and this was confirmed by a deep sampling up to 300 cm depth. Most of the nitrate remained in the surface 60 cm of the soil. Below 120 cm depth nitrate concentration was very low because of the denitrification even at high sewage sludge rate of 100 dry Mg/ha. The $NO_3$-N concentrations in the soil fluctuated over the growing season due to plant uptake and denitrification. The risk of groundwater contamination by nitrate from sewage sludge application up to high rate of 100 dry Mg/ha was very low in a wheat grown clay soil with high water table ( < 3 m).

Effect of Nitrate Concentration in Culture Solution on the Growth and the Uptake of Inorganic Elements of Tomato Plants(Lycopersicum esculentum Mill) (배양액(培養液)의 질산태질소농도가 토마토(Lycopersicum esculentum Mill)의 생육 및 무기원소(無機元素) 흡수에 미치는 영향)

  • Lee, Kwang-Seek;Yu, Jing-Quan;Matsui, Yoshihisa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 1997
  • This experiment was carried out to investigate the effects of nitrate concentration in culture solution on the growth and the uptake of inorganic elements in Tomato plant in the greenhouse. Tomato plants(cv. TVR-2) were grown with nitrate concentrations 8, 16, 24, 32cmol/l, based on Japan ENSI standard solution. Dry weights of lamina and petiole increased with the nitrate concentration. However, the dry weight of fruit was the highest in the treatment of nitrate concentration of 16cmol/l. The proportion of dry weights of vegitative organ to reproductive organ was the lowest in the treatments of nitrate concentrations of 16cmol/l and it increased with the nitrate concentration. The fruit yield was the highest at the treatment of nitrate concentration of 16cmol/l. With the increase of nitrate level the concentrations of N, $NO_3-N$, Ca and Na increased in lamina and petioles. The concentrations of K, P, S and Cl tended to decline in the nitrate concentration of 16 and 32cmol/l. These results indicate that optimum nitrate concentrations in a tomato grown by hydroponics change with growth stage, and the optimum concentrations for vegitative and reproductive stage were 8 and 16cmol/l, respectively. It also was proved that the nitrate concentrations in the culture solution affected antagonistically the uptake of inorganic anion in tomato : In low nitrate level $Cl^-$ uptake was affected much, while $SO_4{^{2-}}$ and $H_2PO_4{^-}$ uptake were affected in high nitrate level.

  • PDF