• Title/Summary/Keyword: nilpotent property

Search Result 33, Processing Time 0.023 seconds

ARMENDARIZ PROPERTY OVER PRIME RADICALS

  • Han, Juncheol;Kim, Hong Kee;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.973-989
    • /
    • 2013
  • We observe from known results that the set of nilpotent elements in Armendariz rings has an important role. The upper nilradical coincides with the prime radical in Armendariz rings. So it can be shown that the factor ring of an Armendariz ring over its prime radical is also Armendariz, with the help of Antoine's results for nil-Armendariz rings. We study the structure of rings with such property in Armendariz rings and introduce APR as a generalization. It is shown that APR is placed between Armendariz and nil-Armendariz. It is shown that an APR ring which is not Armendariz, can always be constructed from any Armendariz ring. It is also proved that a ring R is APR if and only if so is R[$x$], and that N(R[$x$]) = N(R)[$x$] when R is APR, where R[$x$] is the polynomial ring with an indeterminate $x$ over R and N(-) denotes the set of all nilpotent elements. Several kinds of APR rings are found or constructed in the precess related to ordinary ring constructions.

GROUP RINGS SATISFYING NIL CLEAN PROPERTY

  • Eo, Sehoon;Hwang, Seungjoo;Yeo, Woongyeong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.117-124
    • /
    • 2020
  • In 2013, Diesl defined a nil clean ring as a ring of which all elements can be expressed as the sum of an idempotent and a nilpotent. Furthermore, in 2017, Y. Zhou, S. Sahinkaya, G. Tang studied nil clean group rings, finding both necessary condition and sufficient condition for a group ring to be a nil clean ring. We have proposed a necessary and sufficient condition for a group ring to be a uniquely nil clean ring. Additionally, we provided theorems for general nil clean group rings, and some examples of trivial-center groups of which group ring is not nil clean over any strongly nil clean rings.

SEMICOMMUTATIVE PROPERTY ON NILPOTENT PRODUCTS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1251-1267
    • /
    • 2014
  • The semicommutative property of rings was introduced initially by Bell, and has done important roles in noncommutative ring theory. This concept was generalized to one of nil-semicommutative by Chen. We first study some basic properties of nil-semicommutative rings. We next investigate the structure of Ore extensions when upper nilradicals are ${\sigma}$-rigid ${\delta}$-ideals, examining the nil-semicommutative ring property of Ore extensions and skew power series rings, where ${\sigma}$ is a ring endomorphism and ${\delta}$ is a ${\sigma}$-derivation.

Weakly Right IQNN Rings

  • Yang Lee;Sang Bok Nam;Zhelin Piao
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • In this article we look at the property of a 2 by 2 full matrix ring over the ring of integers, of being weakly right IQNN. This generalisation of the property of being right IQNN arises from products of idempotents and nilpotents. We shown that it is, indeed, a proper generalization of right IQNN. We consider the property of beign weakly right IQNN in relation to several kinds of factorizations of a free algebra in two indeterminates over the ring of integers modulo 2.

STRUCTURES CONCERNING GROUP OF UNITS

  • Chung, Young Woo;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.177-191
    • /
    • 2017
  • In this note we consider the right unit-duo ring property on the powers of elements, and introduce the concept of weakly right unit-duo ring. We investigate first the properties of weakly right unit-duo rings which are useful to the study of related studies. We observe next various kinds of relations and examples of weakly right unit-duo rings which do roles in ring theory.

HOMOTOPY FIXED POINT SET $FOR \rho-COMPACT$ TORAL GROUP

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.143-148
    • /
    • 2001
  • First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let $G_\infty$ be a p-discrete toral group and X be a finite complex with an action of $G_\infty such that X^K$ is nilpotent for each finit p-subgroup K of $G_\infty$. Assume X is $F_\rho-complete$. Then X(sup)hG$\infty$ is F(sub)p-finite. Using this result, we give the condition so that X$^{hG}$ is $F_\rho-finite for \rho-compact$ toral group G.

  • PDF

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

MCCOY CONDITION ON IDEALS OF COEFFICIENTS

  • Cheon, Jeoung Soo;Huh, Chan;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1887-1903
    • /
    • 2013
  • We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal-${\pi}$-McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal-${\pi}$-McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal-${\pi}$-McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal-${\pi}$-McCoy rings by examining various sorts of ordinary ring extensions.

REVERSIBILITY AND SYMMETRY OVER CENTERS

  • Choi, Kwang-Jin;Kwak, Tai Keun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.723-738
    • /
    • 2019
  • A property of reduced rings is proved in relation with centers, and our argument in this article is spread out based on this. It is also proved that the Wedderburn radical coincides with the set of all nilpotents in symmetric-over-center rings, implying that the Jacobson radical, all nilradicals, and the set of all nilpotents are equal in polynomial rings over symmetric-over-center rings. It is shown that reduced rings are reversible-over-center, and that given reversible-over-center rings, various sorts of reversible-over-center rings can be constructed. The structure of radicals in reversible-over-center and symmetric-over-center rings is also investigated.