• Title/Summary/Keyword: nilpotent matrix

Search Result 23, Processing Time 0.015 seconds

REVERSIBILITY AND SYMMETRY OVER CENTERS

  • Choi, Kwang-Jin;Kwak, Tai Keun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.723-738
    • /
    • 2019
  • A property of reduced rings is proved in relation with centers, and our argument in this article is spread out based on this. It is also proved that the Wedderburn radical coincides with the set of all nilpotents in symmetric-over-center rings, implying that the Jacobson radical, all nilradicals, and the set of all nilpotents are equal in polynomial rings over symmetric-over-center rings. It is shown that reduced rings are reversible-over-center, and that given reversible-over-center rings, various sorts of reversible-over-center rings can be constructed. The structure of radicals in reversible-over-center and symmetric-over-center rings is also investigated.

The Relation Between Units and Nilpotents

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.213-227
    • /
    • 2022
  • We discuss the relation between units and nilpotents of a ring, concentrating on the transitivity of units on nilpotents under regular group actions. We first prove that for a ring R, if U(R) is right transitive on N(R), then Köthe's conjecture holds for R, where U(R) and N(R) are the group of all units and the set of all nilpotents in R, respectively. A ring is called right UN-transitive if it satisfies this transitivity, as a generalization, a ring is called unilpotent-IFP if aU(R) ⊆ N(R) for all a ∈ N(R). We study the structures of right UN-transitive and unilpotent-IFP rings in relation to radicals, NI rings, unit-IFP rings, matrix rings and polynomial rings.

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.