• Title/Summary/Keyword: nilpotent ideal

Search Result 35, Processing Time 0.025 seconds

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

MAXIMALITY PRESERVING CONSTRUCTIONS OF MAXIMAL COMMUTATIVE SUBALGEBRAS OF MATRIX ALGEBRA

  • Song, Young-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.295-306
    • /
    • 2012
  • Let (R, $m_R$, k) be a local maximal commutative subalgebra of $M_n$(k) with nilpotent maximal ideal $m_R$. In this paper, we will construct a maximal commutative subalgebra $R^{ST}$ which is isomorphic to R and study some interesting properties related to $R^{ST}$. Moreover, we will introduce a method to construct an algebra in $MC_n$(k) with i($m_R$) = n and dim(R) = n.

NILPOTENCY INDEX OF NIL-ALGEBRA OF NIL-INDEX 3

  • LEE WOO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.569-573
    • /
    • 2006
  • Nagata and Higman proved that any nil-algebra of finite nilindex is nilpotent of finite index. The Nagata-Higman Theorem can be formulated in terms of T-ideals. TheT-ideal generated by $a^n$ for all $a{\in}A$ is also generated by the symmetric polynomials. The symmetric polynomials play an importmant role in analyzing nil-algebra. We construct the incidence matrix with the symmetric polynomials. Using this incidence matrix, we determine the nilpotency index of nil-algebra of nil-index 3.

DERIVATIONS ON COMMUTATIVE BANACH ALGEBRAS

  • Lee, Young-Whan;Jun, Kil-Woung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.31-34
    • /
    • 1989
  • In this paper we show that if there is a derivation on a commutative Banach algebra which has a non-nilpotent separating space, then there is a discontinuous derivation on a commutative Banach algebra which has a range in its radical. Also we show that if every prime ideal is closed in a commutative Banach algebra with identity then every derivation on it has a range in its radical.

  • PDF

ALGEBRAS WITH A NILPOTENT GENERATOR OVER ℤp2

  • Woo, Sung-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.487-497
    • /
    • 2006
  • The purpose of this paper is to describe the structure of the rings $\mathbb{Z}_{p^2}[X]/({\alpha}(X))$ with ${\alpha}(X)$ a monic polynomial and $\={X}^{\kappa}=0$ for some nonnegative integer ${\kappa}$. Especially we will see that any ideal of such rings can be generated by at most two elements of the special form and we will find the 'minimal' set of generators of the ideals. We indicate how to identify the isomorphism types of the ideals as $\mathbb{Z}_{p^2}-modules$ by finding the isomorphism types of the ideals of some particular ring. Also we will find the annihilators of the ideals by finding the most 'economical' way of annihilating the generators of the ideal.

SOME RESULTS ON ENDOMORPHISMS OF PRIME RING WHICH ARE $(\sigma,\tau)$-DERIVATION

  • Golbasi, Oznur;Aydin, Neset
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.195-203
    • /
    • 2002
  • Let R be a prime ring with characteristic not two and U is a nonzero left ideal of R which contains no nonzero nilpotent right ideal as a ring. For a $(\sigma,\tau)$-derivation d : R$\rightarrow$R, we prove the following results: (1) If d is an endomorphism on R then d=0. (2) If d is an anti-endomorphism on R then d=0. (3) If d(xy)=d(yx), for all x, y$\in$R then R is commutative. (4) If d is an homomorphism or anti-homomorphism on U then d=0.

  • PDF

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.

CONSTRUCTION OF Γ-ALGEBRA AND Γ-LIE ADMISSIBLE ALGEBRAS

  • Rezaei, A.H.;Davvaz, Bijan
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.175-189
    • /
    • 2018
  • In this paper, at first we generalize the notion of algebra over a field. A ${\Gamma}$-algebra is an algebraic structure consisting of a vector space V, a groupoid ${\Gamma}$ together with a map from $V{\times}{\Gamma}{\times}V$ to V. Then, on every associative ${\Gamma}$-algebra V and for every ${\alpha}{{\in}}{\Gamma}$ we construct an ${\alpha}$-Lie algebra. Also, we discuss some properties about ${\Gamma}$-Lie algebras when V and ${\Gamma}$ are the sets of $m{\times}n$ and $n{\times}m$ matrices over a field F respectively. Finally, we define the notions of ${\alpha}$-derivation, ${\alpha}$-representation, ${\alpha}$-nilpotency and prove Engel theorem in this case.