• Title/Summary/Keyword: nilpotency

Search Result 24, Processing Time 0.017 seconds

ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS

  • Guo, Wenbin;Yu, Haifeng;Zhang, Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.91-102
    • /
    • 2016
  • A chief factor H/K of G is called F-central in G provided $(H/K){\rtimes}(G/C_G(H/K)){\in}{\mathfrak{F}}$. A normal subgroup N of G is said to be ${\pi}{\mathfrak{F}}$-hypercentral in G if either N = 1 or $N{\neq}1$ and every chief factor of G below N of order divisible by at least one prime in ${\pi}$ is $\mathfrak{F}$-central in G. The symbol $Z_{{\pi}{\mathfrak{F}}}(G)$ denotes the ${\pi}{\mathfrak{F}}$-hypercentre of G, that is, the product of all the normal ${\pi}{\mathfrak{F}}$-hypercentral subgroups of G. We say that a subgroup H of G is ${\pi}{\mathfrak{F}}$-embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G and $(H{\cap}T)H_G/H_G{\leq}Z_{{\pi}{\mathfrak{F}}}(G/H_G)$, where $H_G$ is the maximal normal subgroup of G contained in H. In this paper, we use the ${\pi}{\mathfrak{F}}$-embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of p-nilpotency and supersolvability of a group.

A REMARK ON IFP RINGS

  • Lee, Chang Hyeok;Lim, Hyo Jin;Park, Jae Hyoung;Kim, Jung Hyun;Kim, Jung Soo;Jeong, Min Joon;Song, Min Kyung;Kim, Si Hwan;Hwang, Su Min;Eom, Tae Kang;Lee, Min Jung;Lee, Yang;Ryu, Sung Ju
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.311-318
    • /
    • 2013
  • We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.

ON A GENERALIZATION OF THE MCCOY CONDITION

  • Jeon, Young-Cheol;Kim, Hong-Kee;Kim, Nam-Kyun;Kwak, Tai-Keun;Lee, Yang;Yeo, Dong-Eun
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1269-1282
    • /
    • 2010
  • We in this note consider a new concept, so called $\pi$-McCoy, which unifies McCoy rings and IFP rings. The classes of McCoy rings and IFP rings do not contain full matrix rings and upper (lower) triangular matrix rings, but the class of $\pi$-McCoy rings contain upper (lower) triangular matrix rings and many kinds of full matrix rings. We first study the basic structure of $\pi$-McCoy rings, observing the relations among $\pi$-McCoy rings, Abelian rings, 2-primal rings, directly finite rings, and ($\pi-$)regular rings. It is proved that the n by n full matrix rings ($n\geq2$) over reduced rings are not $\pi$-McCoy, finding $\pi$-McCoy matrix rings over non-reduced rings. It is shown that the $\pi$-McCoyness is preserved by polynomial rings (when they are of bounded index of nilpotency) and classical quotient rings. Several kinds of extensions of $\pi$-McCoy rings are also examined.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.