• Title/Summary/Keyword: nicotinamide

Search Result 237, Processing Time 0.026 seconds

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

CD38 Inhibition Protects Fructose-Induced Toxicity in Primary Hepatocytes

  • Soo-Jin Lee;Sung-E Choi;Seokho Park;Yoonjung Hwang;Youngho Son;Yup Kang
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.496-512
    • /
    • 2023
  • A fructose-enriched diet is thought to contribute to hepatic injury in developing non-alcoholic steatohepatitis (NASH). However, the cellular mechanism of fructose-induced hepatic damage remains poorly understood. This study aimed to determine whether fructose induces cell death in primary hepatocytes, and if so, to establish the underlying cellular mechanisms. Our results revealed that treatment with high fructose concentrations for 48 h induced mitochondria-mediated apoptotic death in mouse primary hepatocytes (MPHs). Endoplasmic reticulum stress responses were involved in fructose-induced death as the levels of phosho-eIF2α, phospho-C-Jun-N-terminal kinase (JNK), and C/EBP homologous protein (CHOP) increased, and a chemical chaperone tauroursodeoxycholic acid (TUDCA) prevented cell death. The impaired oxidation metabolism of fatty acids was also possibly involved in the fructose-induced toxicity as treatment with an AMP-activated kinase (AMPK) activator and a PPAR-α agonist significantly protected against fructose-induced death, while carnitine palmitoyl transferase I inhibitor exacerbated the toxicity. However, uric acid-mediated toxicity was not involved in fructose-induced death as uric acid was not toxic to MPHs, and the inhibition of xanthine oxidase (a key enzyme in uric acid synthesis) did not affect cell death. On the other hand, treatment with inhibitors of the nicotinamide adenine dinucleotide (NAD)+-consuming enzyme CD38 or CD38 gene knockdown significantly protected against fructose-induced toxicity in MPHs, and fructose treatment increased CD38 levels. These data suggest that CD38 upregulation plays a role in hepatic injury in the fructose-enriched diet-mediated NASH. Thus, CD38 inhibition may be a promising therapeutic strategy to prevent fructose-enriched diet-mediated NASH.

Interferon-β alleviates sepsis by SIRT1-mediated blockage of endothelial glycocalyx shedding

  • Suhong Duan;Seung-Gook Kim;Hyung-Jin Lim;Hwa-Ryung Song;Myung-Kwan Han
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.314-319
    • /
    • 2023
  • Sepsis is a life-threatening multi-organ dysfunction with high mortality caused by the body's improper response to microbial infection. No new effective therapy has emerged that can adequately treat patients with sepsis. We previously demonstrated that interferon-β (IFN-β) protects against sepsis via sirtuin 1-(SIRT1)-mediated immunosuppression. Another study also reported its significant protective effect against acute respiratory distress syndrome, a complication of severe sepsis, in human patients. However, the IFN-β effect cannot solely be explained by SIRT1-mediated immunosuppression, since sepsis induces immunosuppression in patients. Here, we show that IFN-β, in combination with nicotinamide riboside (NR), alleviates sepsis by blocking endothelial damage via SIRT1 activation. IFN-β plus NR protected against cecal ligation puncture-(CLP)-induced sepsis in wild-type mice, but not in endothelial cell-specific Sirt1 knockout (EC-Sirt1 KO) mice. IFN-β upregulated SIRT1 protein expression in endothelial cells in a protein synthesis-independent manner. IFN-β plus NR reduced the CLP-induced increase in in vivo endothelial permeability in wild-type, but not EC-Sirt1 KO mice. IFN-β plus NR suppressed lipopolysaccharide-induced up-regulation of heparinase 1, but the effect was abolished by Sirt1 knockdown in endothelial cells. Our results suggest that IFN-β plus NR protects against endothelial damage during sepsis via activation of the SIRT1/heparinase 1 pathway.

Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects

  • Muhammad Saeed;Zoya Afzal;Fatima Afzal;Rifat Ullah Khan;Shaaban S. Elnesr;Mahmoud Alagawany;Huayou Chen
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1111-1127
    • /
    • 2023
  • Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.

Antioxidant activity and metabolic regulation of sodium salicylate on goat sperm at low temperature

  • Wenzheng Shen;Yu Fu;Haiyu Bai;Zhiyu Zhang;Zhikun Cao;Zibo Liu;Chao Yang;Shixin Sun;Lei Wang;Chunhuan Ren;Yinghui Ling;Zijun Zhang;Hongguo Cao
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.640-654
    • /
    • 2024
  • Objective: The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. Methods: Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. Results: The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 μM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 μM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 μM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. Conclusion: The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.

Oocyte quality is closely linked to DRP1 derived-mitochondrial fission and mitophagy by the NAD+ biosynthesis in a postovulatory-aging model of pigs

  • Ji-Hyun Shin;Seul-Gi Yang;Hyo-Jin Park;Deog-Bon Koo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.67-80
    • /
    • 2024
  • Background: Post-ovulatory aging (POA) of oocytes is related to a decrease in the quality and quantity of oocytes caused by aging. Previous studies on the characteristics of POA have investigated injury to early embryonic developmental ability, but no information is available on its effects on mitochondrial fission and mitophagy-related responses. In this study, we aimed to elucidate the molecular mechanisms underlying mitochondrial fission and mitophagy in in vitro maturation (IVM) oocytes and a POA model based on RNA sequencing analysis. Methods: The POA model was obtained through an additional 24 h culture following the IVM of matured oocytes. NMN treatment was administered at a concentration of 25 μM during the oocyte culture process. We conducted MitoTracker staining and Western blot experiments to confirm changes in mitochondrial function between the IVM and POA groups. Additionally, comparative transcriptome analysis was performed to identify differentially expressed genes and associated changes in mitochondrial dynamics between porcine IVM and POA model oocytes. Results: In total, 32 common genes of apoptosis and 42 mitochondrial fission and function uniquely expressed genes were detected (≥ 1.5-fold change) in POA and porcine metaphase II oocytes, respectively. Functional analyses of mitochondrial fission, oxidative stress, mitophagy, autophagy, and cellular apoptosis were observed as the major changes in regulated biological processes for oocyte quality and maturation ability compared with the POA model. Additionally, we revealed that the activation of NAD+ by nicotinamide mononucleotide not only partly improved oocyte quality but also mitochondrial fission and mitophagy activation in the POA porcine model. Conclusions: In summary, our data indicate that mitochondrial fission and function play roles in controlling oxidative stress, mitophagy, and apoptosis during maturation in POA porcine oocytes. Additionally, we found that NAD+ biosynthesis is an important pathway that mediates the effects of DRP1-derived mitochondrial morphology, dynamic balance, and mitophagy in the POA model.

Intracellular Concentrations of NAD(P), NAD(P)H, and ATP in a Simulated Oxic-settling-anaerobic (OSA) Process (OSA 공정의 세포 내 ATP, NAD(H), NADP(H) 농도)

  • Ventura, Jey-R Sabado;Nam, Ji-Hyun;Yang, Benqin;Na, Ri;Kil, Hyejin;Nam, Deok-Hyeon;Kang, Ki-Hoon;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2015
  • In order to investigate why OSA (oxic-settling-anaerobic) process produces less sludge than CAS (conventional activated sludge) process, sequential cultivation through 1st aerobic-anaerobic-2nd aerobic conditions, were carried out. Then, the intracellular concentrations of adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD and NADH), and nicotinamide adenine dinucleotide phosphate (NADP and NADPH) were monitored for these three stages. Results showed that the concentrations of these energy substances rapidly decreased through time in both aerobic and anaerobic conditions but the anaerobic culture contained the lower energy level than aerobic culture. The 2nd aerobic culture that experienced anaerobic condition showed lower concentration of these energy substances than those of the 1st aerobic culture. Meanwhile, the anaerobic culture corresponding to the sludge holding stage of OSA was subjected to different soluble chemical oxygen demand (SCOD) levels, detention time, and temperature to evaluate the effects of these variations on the energy level difference between the 1st and 2nd aerobic stages. The lower the SCOD concentration, the longer detention time; and the higher temperature in the anaerobic stage tended to further reduce the intracellular level of the 2nd aerobic culture. On the average, the intracellular energy level of the anaerobic and 2nd aerobic stage were 57.73% and 39.12% of the 1st aerobic culture, respectively. These indicated that the insertion of an anaerobic stage between two aerobic stages could lower the intracellular energy levels, hence the lower the sludge in OSA than CAS process. Moreover, manipulation of the operating conditions of the intervening anaerobic stage can change intracellular energy levels thereby controlling sludge production.

The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury (기계환기로 인한 급성 폐손상에서 poly(ADP-ribose) polymerase-1의 역할)

  • Kim, Je-Hyeong;Yoon, Dae Wui;Hur, Gyu Young;Jung, Ki Hwan;Lee, Sung Yong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.451-463
    • /
    • 2006
  • Background : Reactive oxygen species (ROS) take center stage as executers in ventilator-induced lung injury (VILI). The protein with DNA-damage scanning activity, poly (ADP-ribose) polymerase-1 (PARP1), signals DNA rupture and participates in base-excision repair. Paradoxically,overactivation of PARP1 in response to massive genotoxic injury such as ROS can induce cell death through ${\beta}$ -nicotinamide adenine dinucleotide ($NAD^+$) depletion, resulting in inflammation. The purpose of this study is to investigate the role of PARP1 and the effect of its inhibitor in VILI. Methods : Forty-eight male C57BL/6 mice were divided into sham, lung protective ventilation(LPV), VILI, and PARP1 inhibitor (PJ34)+VILI (PJ34+VILI) groups. Mechanical ventilator setting for the LPV group was $PIP\;15cmH_2O$ + $PEEP\;3cmH_2O$ + RR 90/min + 2 hours. The VILI and PJ34+VILI groups were ventilated on a setting of $PIP\;40cmH_2O$ + $PEEP\;0cmH_2O$ + RR 90/min + 2 hours. As a PARP1 inhibitor for the PJ34+VILI group, 20 mg/Kg of PJ34 was treated intraperitoneally 2 hours before mechanical ventilation. Wet-to-dry weight ratio and acute lung injury (ALI) score were measured to determine the degree of VILI. PARP1 activity was evaluated by using an immunohistochemical method utilizing biotinylated NAD. Myeloperoxidase (MPO) activity and the concentration of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 were measured in bronchoalveolar lavage fluid (BALF). Results : In the PJ34+VILI group, PJ34 pretreatment significantly reduced the degree of lung injury, compared with the VILI group (p<0.05). The number of cells expressing PARP1 activity was significantly increased in the VILI group, but significantly decreased in the PJ34+VILI group (p=0.001). In BALF, MPO activity, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 were also significantly lower in the PJ34+VILI group (all, p<0.05). Conclusion : PARP1 overactivation plays a major role in the mechanism of VILI. PARP1 inhibitor prevents VILI, and decreases MPO activity and inflammatory cytokines.

Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs

  • Li, Wei;Li, Bo;Lv, Jiaqi;Dong, Li;Zhang, Lili;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.686-695
    • /
    • 2018
  • Objective: The objective of this study was to investigate the effects of dietary choline supplementation on hepatic lipid metabolism and gene expression in finishing pigs with intrauterine growth retardation (IUGR). Methods: Using a $2{\times}2$ factorial design, eight normal birth weight (NBW) and eight IUGR weaned pigs were fed either a basal diet (NBW pigs fed a basal diet, NC; IUGR pigs fed a basal diet, IC) or a diet supplemented with two times more choline than the basal diet (NBW pigs fed a high-choline diet, NH; IUGR pigs fed a high-choline diet, IH) until 200 d of age. Results: The results showed that the IUGR pigs had reduced body weight compared with the NBW pigs (p<0.05 from birth to d 120; p = 0.07 from d 120 to 200). Increased (p<0.05) free fatty acid (FFA) and triglyceride levels were observed in the IUGR pigs compared with the NBW pigs. Choline supplementation decreased (p<0.05) the levels of FFAs and triglycerides in the serum of the pigs. The activities of malate dehydrogenase and glucose 6-phosphate dehydrogenase were both increased (p<0.05) in the livers of the IUGR pigs. Choline supplementation decreased (p<0.05) malate dehydrogenase activity in the liver of the pigs. Gene expression of fatty acid synthase (FAS) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation decreased (p<0.05) FAS and acetyl-CoA carboxylase ${\alpha}$ expression in the livers of the IUGR pigs. The expression of carnitine palmitoyl transferase 1A (CPT1A) was lower (p<0.05) in the IC group than in the other groups, and choline supplementation increased (p<0.05) the expression of CPT1A in the liver of the IUGR pigs and decreased (p<0.01) the expression of hormone-sensitive lipase in both types of pigs. The gene expression of phosphatidylethanolamine N-methyltransferase (PEMT) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation significantly reduced (p<0.05) PEMT expression in the liver of the IUGR pigs. Conclusion: In conclusion, the lipid metabolism was abnormal in IUGR pigs, but the IUGR pigs consuming twice the normal level of choline had improved circulating lipid parameters, which could be related to the decreased activity of nicotinamide adenine dinucleotide phosphate-generating enzymes or the altered expressions of lipid metabolism-related genes.

Synthesis and Characterization of Substituted Pyridine Complexes of Molybdenum(Ⅴ). Di-${\mu}$-oxo-dioxodichlorobis(substituted pyridines) dimolybdenum(Ⅴ) and Substituted Pyridinium Di-${\mu}$-oxo-dioxohexaisothiocyanatodimolybdates(Ⅴ) (몰리브덴의 피리딘계 착물합성과 그 성질 (제5보). 이-${\mu}$ -옥소-이옥소이클로로비스(치환피리딘) 이 몰리브덴 (Ⅴ) 와 이-${\mu}$- 옥소-이옥소육이소티오시아나토 이 몰리브덴 (Ⅴ) 산 치환피리딘늄)

  • Kim, Chang-Su;Sang Oh Oh
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.383-388
    • /
    • 1982
  • $Mo_2O_4Cl_2$$(X-py)_4{\cdot}2H_2$O and $(X-pyH)_4$[$Mo_2O_4(NCS)_6)$]${\cdot}H_2$O have been prepared. The infrared, electronic and reflectance spectra, molar conductances and magnetic susceptibility data of complexes are reported. $Mo_2O_4Cl_2$$(X-py)_4{\cdot}2H_2$O (X-py were 3-and 4-cyanopyridine, nicotinamide, 3,5-lutidine and 2-amino-4-picoline) were obtained by hydrolysis of the corresponding substituted pyridinium oxopentachloromolybdates(Ⅴ). Addition of water and substituted pyridines to molybdenum(Ⅴ)-thiocyanate ethylacetate extract yielded brown compounds, $(X-pyH)_4$[$Mo_2O_4(NCS)_6)$]${\cdot}H_2$O where X-py were pyridine, ${\alpha}$, 3-bromopyridine 3,5-lutidine, 3-benzoylpyridine and 4-acetylpyridine. Binuclear, $Mo_2O_4Cl_2(X-py)_4{\cdot}2H_2$ prepared from hydrolysis of $(X-pyH)_2[MoOCl_5]{\cdot}H_2O$ were diamagnetic and nonelectrolytes. The anion of $(X-pyH)_4$[$Mo_2O_4(NCS)_6)$]${\cdot}H_2$O was formulated as dimer and electrolyte.

  • PDF