• Title/Summary/Keyword: nickel substrates

Search Result 100, Processing Time 0.063 seconds

The Wetting Property of Indium Solder (인듐 솔더의 젖음특성)

  • 김대곤;이창배;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.106-112
    • /
    • 2002
  • In the present study, the wettability and interfacial tension between (bare Cu, electroless Ni/cu, immersion Au/Ni/Cu) substrates and indium solder were investigated as a function of soldering temperature, types of flux. The wettability of In solder increased with soldering temperature and solid content of flux. The wettability of In solder was affected by the substrate metal finish used, i.e., nickel, gold and copper. On the bare Cu substrate, In solder wet better than any of the substrate metal finishes tested. Intermetallic compound formation between liquid solder and substrate reduced the interfacial energy and improved wettability. For the identification of intermetallic compounds, X-Ray Diffraction(LRD) were employed. Experimental results showed that the intermetallic compounds, such as Cu11In9 and In27Ni10 are observed f3r different substrates respectively. The wetting kinetics is investigated by measuring wetting time with the wetting balance technique. The activation energy of wetting calculated for the In solder/cu substrate and In solder/electroless Au/Ni/Cu substrate are 36.13 and 27.36 kJ/mol, respectively.

ADHESION STUDIES OF MAGNETRON-SPUTTERED COPPER FILMS ON INCONEL SUBSTRATES

  • Lee, G.H.;Kwon, S.C.;Lee, S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.410-415
    • /
    • 1999
  • The adhesion strength of sputtered copper films to Inconel substrates has been studied using the scratch test. The effects of substrate treatments before deposition such as chemical or ion bombardment etching were investigated by means of a mean critical load derived from a Weibull-like statistical analysis. It was found that the mean critical load was very weak unless the amorphous layer produced by mechanical polishing on the substrate surface was eliminated. Chemical etching in a nitric-hydrochloric acid bath was shown to have practically no effect on the enhancement of the adhesion. In contrast, the addition in this bath of nickel and copper sulphates allowed removal of the amorphous layer and an increase in the values of the mean critical load. However, it was observed that excessive chemical etching could cancel out the mean critical load enhancement. The results obtained in the case of ion bombardment etching pretreatments could be far higher than those obtained with chemical etching. Moreover, for a sufficiently long period of ion bombardment etching, the adhesion strength was so high that it was impossible to observe evidence of an adhesion failure.

  • PDF

Preparation of Conductive Silicone Rubber Sheets by Electroless Nickel Plating (무전해 니켈도금에 의한 도전성 실리콘고무 시트의 제조)

  • Lee, Byeong Woo;Lee, Jin Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.269-274
    • /
    • 2014
  • Electroless plating process as a solution deposition method is a viable means of preparing conductive metal films on non-conducting substrates through chemical reactions. In the present study, the preparation and properties of electroless Ni-plating on flexible silicone rubber are described. The process has been performed using a conventional Ni(P) chemical bath. Additives and complexing agents such as ammonium chloride and glycine were added and the reaction pH was controlled by NaOH aqueous solution. Ni deposition rate and crystallinity have been found to vary with pH and temperature of the plating bath. It was shown that Ni-films having the high crystallinity, enhanced adhesion and optimum electric conductivity were formed uniformly on silicone rubber substrates under pH 7 at $70^{\circ}C$. The conductive Ni-plated silicone rubber showed a high electromagnetic interference shielding effect in the 400 MHz-1 GHz range.

Property of Nickel Silicides with 10 nm-thick Ni/Amorphous Silicon Layers using Low Temperature Process (10 nm-Ni 층과 비정질 실리콘층으로 제조된 저온공정 나노급 니켈실리사이드의 물성 변화)

  • Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.322-329
    • /
    • 2009
  • 60 nm- and 20 nm-thick hydrogenated amorphous silicon (a-Si:H) layers were deposited on 200 nm $SiO_2/Si$ substrates using ICP-CVD (inductively coupled plasma chemical vapor deposition). A 10 nm-Ni layer was then deposited by e-beam evaporation. Finally, 10 nm-Ni/60 nm a-Si:H/200 nm-$SiO_2/Si$ and 10 nm-Ni/20 nm a-Si:H/200 nm-$SiO_2/Si$ structures were prepared. The samples were annealed by rapid thermal annealing for 40 seconds at $200{\sim}500^{\circ}C$ to produce $NiSi_x$. The resulting changes in sheet resistance, microstructure, phase, chemical composition and surface roughness were examined. The nickel silicide on a 60 nm a-Si:H substrate showed a low sheet resistance at T (temperatures) >$450^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate showed a low sheet resistance at T > $300^{\circ}C$. HRXRD analysis revealed a phase transformation of the nickel silicide on a 60 nm a-Si:H substrate (${\delta}-Ni_2Si{\rightarrow}{\zeta}-Ni_2Si{\rightarrow}(NiSi+{\zeta}-Ni_2Si)$) at annealing temperatures of $300^{\circ}C{\rightarrow}400^{\circ}C{\rightarrow}500^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate had a composition of ${\delta}-Ni_2Si$ with no secondary phases. Through FE-SEM and TEM analysis, the nickel silicide layer on the 60 nm a-Si:H substrate showed a 60 nm-thick silicide layer with a columnar shape, which contained both residual a-Si:H and $Ni_2Si$ layers, regardless of annealing temperatures. The nickel silicide on the 20 nm a-Si:H substrate had a uniform thickness of 40 nm with a columnar shape and no residual silicon. SPM analysis shows that the surface roughness was < 1.8 nm regardless of the a-Si:H-thickness. It was confirmed that the low temperature silicide process using a 20 nm a-Si:H substrate is more suitable for thin film transistor (TFT) active layer applications.

Inverse effect of Nickel modification on photoelectrochemical performance of TiNT/Ti photoanode (TiNT/Ti 광아노드의 광전기화학 특성에 미치는 Ni 금속의 영향)

  • Lee, JeongRan;Choi, HaeYoung;Shinde, Pravin S.;Go, GeunHo;Lee, WonJae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.100-100
    • /
    • 2011
  • Nanomaterial architecture with highly ordered, vertically oriented $TiO_2$ nanotube arrays shows a good promise for diverse technological applications. As inspired from the literature reports that Nickel modification can improve the photocatalytic activity of $TiO_2$, it was planned to coat Ni into the $TiO_2$ matrix. In this study, first $TiO_2$ nanotubes(TiNTs) were prepared by anodization (60V,3min) in HF-free aqueous electrolyte on ultrasonically cleaned polished titanium sheet substrates ($1{\times}7cm^2$). The typical thickness of the sintered TiNT ($500^{\circ}C$for10min) was ~1 micronas confirmed from the FESEM study. In the next part, as-anodized and sintered TiNT/Ti photoanodes were used to coat Ni by AC electrodeposition from aqueous 0.1M nickel sulphate solution. During AC electrodeposition, conditions such as 1V DC offset voltage, 9V amplitude (peak-to-peak) and 750 Hz frequency were fixed constant and the deposition time was varied as 0.5 min, 1 min, 2 min and 10 min. The photoelectrochemical performance of pristine and Ni modified TiNT/Ti photoanodes was measured in 1N NaOH electrolyte under 1 SUN illumination in the potential range of -1V and 1.2V versus Ag/AgCl reference electrode. The photocurrent performance of TiNT/Ti photoanode decreased upon Ni modification and the results were confirmed after repeated experiments. This suggests us that Ni modification inhibits the photoelectrochemical performance of $TiO_2$ nanotubes.

  • PDF

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Kim, Kwang Joo;Kim, Min Hwan;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.

Characterization of Composite Silicide Obtained from NiCo-Alloy Films (코발트/니켈 합금박막으로부터 형성된 복합실리사이드)

  • Song Ohsung;Cheong Seonghwee;Kim Dugjoong
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.846-850
    • /
    • 2004
  • NiCo silicide films have been fabricated from $300{\AA}-thick\;Ni_{1-x}Co_{x}(x=0.1\sim0.9)$ on Si-substrates by varying RTA(rapid thermal annealing) temperatures from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 sec. Sheet resistance, cross-sectional microstructure, and chemical composition evolution were measured by a four point probe, a transmission electron microscope(TEM), and an Auger depth profilemeter, respectively. For silicides of the all composition and temperatures except for $80\%$ of the Ni composition, we observed small sheet resistance of sub- $7\;{\Omega}/sq.,$ which was stable even at $1100^{\circ}C$. We report that our newly proposed NiCo silicides may obtain sub 50 nm-thick films by tunning the nickel composition and silicidation temperature. New NiCo silicides from NiCo-alloys may be more appropriate for sub-0.1${\mu}m$ CMOS process, compared to conventional single phase or stacked composit silicides.

Property and Microstructure Evolution of Nickel Silicides on Nano-thick Polycrystalline Silicon Substrates (나노급 다결정 실리콘 기판 위에 형성된 니켈실리사이드의 물성과 미세구조)

  • Kim, Jong-Ryul;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We fabricated thermally-evaporated 10 nm-Ni/30 nm and 70 nm Poly-Si/200 nm-$SiO_2/Si$ structures to investigate the thermal stability of nickel silicides formed by rapid thermal annealing(RTA) of the temperature of $300{\sim}1100^{\circ}C$ for 40 seconds. We employed for a four-point tester, field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), high resolution X-ray diffraction(HRIXRD), and scanning probe microscope(SPM) in order to examine the sheet resistance, in-plane microstructure, cross-sectional microstructure evolution, phase transformation, and surface roughness, respectively. The silicide on 30 nm polysilicon substrate was stable at temperature up to $900^{\circ}C$, while the one on 70 nm substrate showed the conventional $NiSi_2$ transformation temperature of $700^{\circ}C$. The HRXRD result also supported the existence of NiSi-phase up to $900^{\circ}C$ for the Ni silicide on the 30 nm polysilicon substrate. FE-SEM and TEM confirmed that 40 nm thick uniform silicide layer and island-like agglomerated silicide phase of $1{\mu}m$ pitch without residual polysilicon were formed on 30 nm polysilicon substrate at $700^{\circ}C\;and\;1000^{\circ}C$, respectively. All silicides were nonuniform and formed on top of the residual polysilicon for 70 nm polysilicon substrates. Through SPM analysis, we confirmed the surface roughness was below 17 nm, which implied the advantage on FUSI gate of CMOS process. Our results imply that we may tune the thermal stability of nickel monosilicide by reducing the height of polysilicon gate.

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

Design and Fabrication of Mold Insert for Injection Molding of Microfluidic tab-on-a-chip for Detection of Agglutination (응집반응 검출을 위한 미세 유체 Lab on a chip의 사출성형 금형 인서트의 디자인 및 제작)

  • Choi, Sung-Hwan;Kim, Dong-Sung;Kwon, Tai-Hun
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.667-672
    • /
    • 2006
  • Agglutination is one of the most commonly employed reactions in clinical diagnosis. In this paper, we have designed and fabricated nickel mold insert for injection molding of a microfluidic lab-on-a-chip for the purpose of the efficient detection of agglutination. In the presented microfluidic lab-on-a-chip, two inlets for sample blood and reagent, flow guiding microchannels, improved serpentine laminating micromixer(ISLM) and reaction microwells are fully integrated. The ISLM, recently developed by our group, can highly improve mixing of the sample blood and reagent in the microchannel, thereby enhancing reaction of agglutinogens and agglutinins. The reaction microwell was designed to contain large volume of about $25{\mu}l$ of the mixture of sample blood and reagent. The result of agglutination in the reaction microwell could be determined by means of the level of the light transmission. To achieve the cost-effectiveness, the microfluidic lab-on-a-chip was realized by the injection molding of COC(cyclic olefin copolymer) and thermal bonding of two injection molded COC substrates. To define microfeatures in the microfluidic lab-on-a-chip precisely, the nickel mold inserts of lab-on-a-chip for the injection molding were fabricated by combining the UV photolithography with a negative photoresist SU-8 and the nickel electroplating process. The microfluidic lab-on-a-chip developed in this study could be applied to various clinical diagnosis based on agglutination.