• 제목/요약/키워드: nickel removal

검색결과 110건 처리시간 0.021초

Comparison of the mechanical efficacy of sonic activated irrigation and passive ultrasonic irrigation for intracanal medicaments removal

  • Jang, Ju-Kyong;Kwak, Sangwon;Choi, Ga Young;Ha, Jung-Hong;Choi, Sung-Baik;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • 제53권10호
    • /
    • pp.743-750
    • /
    • 2015
  • Objectives: This study compared the mechanical efficacy of sonic activated and passive ultrasonic irrigation for removing intracanal medicament from a simulated root canal under controlled conditions. Materials and Methods: Thirty simulated root canal in resin blocks were randomly divided into 3-groups. The canals were enlarged using ProTaper files and K3XF (#30/0.06). After cleaning and drying, canals were filled with Calcipex. Overfilled materials were wiped out and measured their weight to the unit of 1/10mg. After one week storage in 100% humidity $37^{\circ}C$ temperature, canals were irrigated using 20mL of saline with one of following methods according to the designated groups (n = 10). For group-NI, 30-gauge nickel-titanium irrigation needle was used. During irrigation with every 5mL, needle was moved in-and-out with 4-mm amplitudes. EndoActivator and ultrasonic tip were used for group-EA and group-UT respectively for 20 seconds after every 5mL irrigation using needle. Then the weight was measured again to calculate the weight of residual remnants. The data were analyzed by one-way ANOVA and Duncan's post-hoc test at a significance level of 95%. Results: The weight of the residual medicaments were $3.62{\pm}0.81mg$, $2.84{\pm}0.28mg$, and $2.73{\pm}0.90mg$ for group-NI, -EA, and -UT, respectively. Group-EA and group-UT had no significant differences to remove intracanal medicament and left significantly less amount of paste than group-NI (p < 0.05). Conclusions: Under the controlled conditions of this study, the sonic activation and PUI have similar mechanical efficacy for removing intracanal medicament.

Inhibitory Effect of the Selected Heavy Metals on the Growth of the Phosphorus Accumulating Microorganism, Acinetobacter sp.

  • Chung, Keun-Yook;Han, Seok-Soon;Kim, Hong-Ki;Choi, Guak-Soon;Kim, In-Su;Lee, Sang-Sung;Woo, Sun-Hee;Lee, Kyung-Ho;Kim, Jai-Joung
    • Korean Journal of Environmental Agriculture
    • /
    • 제25권1호
    • /
    • pp.40-46
    • /
    • 2006
  • This study was initiated to evaluate the inhibitory effect of selected heavy metals on the growth of Acinetobacter sp. Down as one of the phosphorus accumulating microorganisms (PAO) involved in the enhanced biological phosphorus removal (EBPR) process of the wastewater treatment plant. Acinetobacter sp. was initially selected as a starting model microorganism and was grown under aerobic condition for this experiment. The heavy metals selected and investigated in this study were cadmium (Cd), copper (Cu), mercury (Hg), nickel (Ni), and zinc (Zn). Median $(IC_{50})$ and threshold $(IC_{10})$ inhibitory concentrations for Cd, Cu, Hg, Ni, and Zn were 2.95 and 1.45, 4.92 and 2.53, 0.03 and 0.02, 1.12 and 0.43, 14.84 and 5.46 mg $L^{-1}$, respectively. We demonstrated that most of heavy metals tested in the experiment inhibited the growth of Acinetobacter sp. in the range of predetermined concentrations. Based on the data obtained from the experiment, Hg was the most sensitive to Acinetobacter sp., then Ni, Cd, Cu, and Zn in order.

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate (TiO2 nanotube plate의 질산성질소 전기분해 효율 평가)

  • Kim, Da Eun;Lee, Yongho;Han, Heeju;Choi, Hyo yeon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • 제35권3호
    • /
    • pp.612-621
    • /
    • 2018
  • In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.

Increased Microbial Resistance to Toxic Wastewater by Sludge Granulation In Upflow Anaerobic Sludge Blanket Reactor

  • Bae, Jin-Woo;Rhee, Sung-Keun;Kim, In S.;Hyun, Seung-Hoon;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.901-908
    • /
    • 2002
  • The relationship between the layered structure of granules in UASB reactors and microbial resistance to toxicity was investigated using disintegrated granules. When no toxic materials were added to the media, the intact and disintegrated granules exhibited almost the same ability to decrease COD and to produce methane. However, when metal ions and organic toxic chemicals were added to a synthetic wastewater, he intact granules were found to be more resistant to toxicity than the disintegrated granules, as determined by the methane production. The difference in resistance between the intact and disintegrated granules was maximal, with toxicant concentrations ranging from 0.5 mM to 2 mM for trichloroethylene with toluene and 5 mM to 20 mM for metal ions (copper, nickel, zinc. chromium, and cadmium ions). The augmented COD removal rate by granulation compared to disintegrated granules was also measured in the treatment of synthetic and real wastewaters; synthetic wastewater, $-2.6\%$; municipal wastewater, $2.8\%$; swine wastewater, $6.4\%$; food wastewater, $25.0\%$; dye works wastewater, $42.9\%$; and landfill leachate, $61.8\%$. Continuous reactor operation also demonstrated that the granules in the UASB reactor were helpful in treating toxic wastewater, such as landfill leachate.

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • 제14권4호
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

Recovery sub micron-graphitized carbon from oil fly ash

  • Hsieh, Ya-Min;Tsai, Min-Sing;Tsai, Shang-Lin
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.633-637
    • /
    • 2001
  • Oil fly ash is known as one source of raw materials from which vanadium and nickel metals can be recovered. The current recovery process of valuable metals from oil fly ash is mainly the hydrormetallurgy one. Nevertheless, a great amount about 50~80%, of unburned carbon remains as byproduct after hydrormetallursy process. In Taiwan, if hydrormetallursy processes have proceeded, it can be estimated that the annual production of unburned carbon is 25 thousand tons. From the viewpoint of resource recycling, this study is a preliminary study and investigates in recovery of sub micron- graphitized carbon from unburned carbon by a designed process. The designed process included the following steps: 1.selecting a portion with +400mesh size from unburned carbon; 2.treating the selected in ultrasonic waves; 3.using a 400mesh sieve to obtain the product which is under 400mesh; 4.Removal ash from the product. In regard to treatment by ultrasonic waves in the designed process, treating time of ultrasonic waves is a simple and only variance in this study. The results indicate that the production yields increase with the treating time of ultrasonic waves; the production yield in specific conditions of this study can reach about 23%, in which ash content in product is about 2.5%. According to results of SEM, TEM and XRD, the products from the designed process are flakes in shape, several microns in size and graphitized carbon in carbon crystal phase. Except to graphitized carbon, there are a little carbon blacks, which are graphite 2H in carbon crystal phase in the products. Conclusively, the designed process is possibly applicable, by which comes to the recovery of micron- graphitized carbon.

  • PDF

Biosorption Model and Factors for Removing Lead to Aureobasdium pullulans being Imperfect Fungus (불완전 균류 Aureobasdium pullulans으로 납을 제거하기 위한 인자들과 흡착모델)

  • Suh, Jung-Ho;Suh, Myung-Gyo;Chung, Kyung-Tae;Lee, Yong-Hee
    • Journal of Life Science
    • /
    • 제16권6호
    • /
    • pp.877-883
    • /
    • 2006
  • An alternative method to remove and recover heavy metals is biosorption based on metal-sequestering properties of natural or biological origin. In this study, the effects of factors such as temperature, pH, initial concentration of lead, and initial amount of biomass on biosorption of lead using Aureobasdium pullulans were investigated. A. pullulans has an excellent selectivity to remove lead than other heavy metals such as cadmium, chromium, nickel in pure and mixed solution. The optimum temperature of biosorption with A. pullulans was $40^{\circ}C$ and the amount of removal increased at high pH. The higher initial lead concentration or the lower cell dry weight, the higher amount of lead was adsorbed. The adsorption isotherm of lead was accorded with Freundlich model. The adsorption capacity and initial adsorption rate of living A. pullulans were about twice higher than that of dead one.

A Study on the Removal Characteristics of a Radioactively Contaminated Oxide Film from the irradiated Stainless Steel Surface using Short Pulsed Laser Ablation (초단 펄스레이저 어블레이션에 의한 스테인리스강 표면의 오염산화막 제거 특성)

  • Kim, Geun-Woo;Yoon, Sung-Sik;Kim, Ki-Chul;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권10호
    • /
    • pp.105-110
    • /
    • 2020
  • Radioactive Oxides are formed on the surface of the primary equipment in a nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the equipment, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce production of the secondary radioactive wastes. They were also used to minimize the damages that were caused on the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Further, the laser source was selected with two different wavelengths. Furthermore, the depth of the coating layer was analyzed using a 3D laser microscope by changing the laser ablation conditions. Based on the analysis, the optimal conditions of ablation were determined using a 1064nm short-pulsed laser ablation technique in order to remove the radioactively contaminated oxide film from the irradiated stainless steel surface.

Histologic and biomechanical characteristics of orthodontic self-drilling and self-tapping microscrew implants (Self drilling과 Self-tapping microscrew implants의 조직학적 및 생역학적인 비교)

  • Park, Hyo-Sang;Yen, Shue;Jeoung, Seong-Hwa
    • The korean journal of orthodontics
    • /
    • 제36권4호
    • /
    • pp.295-307
    • /
    • 2006
  • Objective: The purpose of this study was to compare the histological and biomechanical characteristics of self-tapping and self-drilling microscrew implants. Methods: 112 microscrew implants (56 self-drilling and 56 self-tapping) were placed into the tibia of 28 rabbits. The implants were loaded immediately with no force, light (100 gm), or heavy force (200 gm) with nickel-titanium coil springs. The animals were sacrificed at 3- and 5-weeks after placement and histologic and histomorphometric analysis were performed under a microscope. Results: All microscrew implants stayed firm throughout the experiment. There was no significant difference between self-drilling and self-tapping microscrew implants both in peak insertion and removal torques. Histologic examinations showed there were more defects in the self-tapping than the self-drilling microscrew implants, and newly formed immature bone was increased at the interface in the self-tapping 5-week group. There was proliferation of bone towards the outer surface of the implant and/or toward the marrow space in the self-drilling group. Histologically, self-drilling microscrew implants provided more bone contact initially but the two methods became similar at 5 weeks. Conclusion: These results indicate the two methods can be used for microscrew implant placement, but when using self-tapping microscrew implants, it seems better to use light force in the early stages.

Effects of crystallization reagent and pH on the sulfide crystallization of Cu and Ni in fluidized bed reactor (유동층 반응기를 이용한 구리와 니켈의 황화물 결정화에 결정화 시약 및 pH가 미치는 영향)

  • Jeong, Eunhoo;Shim, Soojin;Yun, Seong Taek;Hong, Seok Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제28권2호
    • /
    • pp.207-215
    • /
    • 2014
  • Wastewater containing heavy metals such as copper (Cu) and nickel (Ni) is harmful to humans and the environment due to its high toxicity. Crystallization in a fluidized bed reactor (FBR) has recently received significant attention for heavy metal removal and recovery. It is necessary to find optimum reaction conditions to enhance crystallization efficacy. In this study, the effects of crystallization reagent and pH were investigated to maximize crystallization efficacy of Cu-S and Ni-S in a FBR. CaS and $Na_2S{\cdot}9H_2O$ were used as crystallization reagent, and pH were varied in the range of 1 to 7. Additionally, each optimum crystallization condition for Cu and Ni were sequentially employed in two FBRs for their selective removal from the mixture of Cu and Ni. As major results, the crystallization of Cu was most effective in the range of pH 1-2 for both CaS and $Na_2S{\cdot}9H_2O$ reagents. At pH 1, Cu was completely removed within five minutes. Ni showed a superior reactivity with S in $Na_2S{\cdot}9H_2O$ compared to that in CaS at pH 7. When applying each optimum crystallization condition sequentially, only Cu was firstly crystallized at pH 1 with CaS, and then, in the second FBR, the residual Ni was completely removed at pH 7 with $Na_2S{\cdot}9H_2O$. Each crystal recovered from two different FBRs was mainly composed of CuxSy and NiS, respectively. Our results revealed that Cu and Ni can be selectively recovered as reusable resources from the mixture by controlling pH and choosing crystallization reagent accordingly.