DOI QR코드

DOI QR Code

Biosorption Model and Factors for Removing Lead to Aureobasdium pullulans being Imperfect Fungus

불완전 균류 Aureobasdium pullulans으로 납을 제거하기 위한 인자들과 흡착모델

  • Suh, Jung-Ho (Dept. of Environment & Chemistry, Ulsan College) ;
  • Suh, Myung-Gyo (Dept. of Medical Administration, Dong-Eui Institute of Technology) ;
  • Chung, Kyung-Tae (Dept. of Life Science & Biotechnology and Research Institute for Basic Sciences, Dong-Eui University) ;
  • Lee, Yong-Hee (Dept. of Life Science & Biotechnology and Research Institute for Basic Sciences, Dong-Eui University)
  • 서정호 (울산과학대학 환경생활화학과) ;
  • 서명교 (동의과학대학 의무행정학과) ;
  • 정경태 (동의대학교 생명응용과학과 및 기초과학연구소) ;
  • 이용희 (동의대학교 생명응용과학과 및 기초과학연구소)
  • Published : 2006.10.01

Abstract

An alternative method to remove and recover heavy metals is biosorption based on metal-sequestering properties of natural or biological origin. In this study, the effects of factors such as temperature, pH, initial concentration of lead, and initial amount of biomass on biosorption of lead using Aureobasdium pullulans were investigated. A. pullulans has an excellent selectivity to remove lead than other heavy metals such as cadmium, chromium, nickel in pure and mixed solution. The optimum temperature of biosorption with A. pullulans was $40^{\circ}C$ and the amount of removal increased at high pH. The higher initial lead concentration or the lower cell dry weight, the higher amount of lead was adsorbed. The adsorption isotherm of lead was accorded with Freundlich model. The adsorption capacity and initial adsorption rate of living A. pullulans were about twice higher than that of dead one.

발효산업에 많이 사용되는 A. pullulans를 사용하여 독성 중금속인 납에 대한 제거량을 살펴보았다. 용액 중의 중금속을 제거할 때 A. pullulans가 다른 중금속에 비해 납에 대한 선택성이 우수하였으며 $40^{\circ}C$에서 최대 흡착량을 나타내었으며 또한 최적 pH가 9일 경우에 흡착량이 증가하였다. 초기납의 농도가 96 mg/l 인 경우에 단위 미생물당 흡착량이 120mg/g로 짧은 시간내에 많은 양의 납을 제거함을 알 수 있었다. 그리고 약 200 mg Pb/g cell dry weight 정도가 최대 납 흡착량인 것으로 나타났다. 그리고 미생물의 보존기간에 따라 세포외 고분자물질의 분비가 증가하여 납 흡착량을 증가시켰으며, Freundlich 모델에 잘 적용되었다. 그리고 살아있는 상태가 사멸된 상태에서 평형흡착량은 약 2배 정도 흡착능이 우수함을 알 수 있었으며, 그에 따라서 초기 흡착속도도 살아있는 상태가 사멸된 상태보다 훨씬 빠른 것을 알 수 있었다.

Keywords

References

  1. Fischer, R. G., S. Repsomanikis and M. O. Andrease. 1995. Bioaccumulation of methylmercury and transformation of inorganic mercury by macrofungi. Environ. Sci. Technol. 29, 993-999 https://doi.org/10.1021/es00004a020
  2. Fourest, E. and J. C. Roux. 1992. Heavy metal biosorption by fungal mycelial by-products; mechanism and influence of pH. Appl. Microbiol. Biotechnol. 37, 399-403 https://doi.org/10.1007/BF00211001
  3. Friis, N. and P. Myers-Keith. 1986. Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng. 28, 21-28 https://doi.org/10.1002/bit.260280105
  4. Gadd, G. M. and L. de Rome. 1988. Biosorption of copper by fungal malanin. Appl. Microbiol. Biotechnol. 29, 61-617 https://doi.org/10.1007/BF00258352
  5. Lee, E. J. 1995. A study on adsorption of Lead in wastewater using natural Kaolinite. Kor. J. Env. Hlth. Soc. 21, 77-86
  6. Mowill, J. S. and G. M. Gadd. 1984. Cadmium uptake by Aureobasidium pullulans. J. Gen. Microbiol. 130, 279-284
  7. Nakajima, A. and T. Sakaguchi. 1986. Selective accumulation of heavy metals by microorganism. Appl. Microbiol. Biotechnol. 24, 59-64
  8. Pighi, L., T. Pumpel and F. Schinneer. 1989. Selective accumulation of silver by fungi. Biotechnol. Lett. 11, 275-280 https://doi.org/10.1007/BF01031577
  9. Suh, J. H., M. G. Suh and Y. C. Cho. 1998. A comparative study for removal of mecury and lead by microorganisms. Kor. J. Env. Hlth. Soc. 24, 98-103
  10. Suh, J. H., M. G. Suh and E. Y. Kim. 1997. Biosorption Model of mecury by Saccharomyces cerevisia and Aureobasidium pullulans. Kor. J. Env. Hlth. Soc. 23, 21-25
  11. Suh, J. H., M. G. Suh and Y. S. Park. 1998. Biosorption process for removing heavy metals in aqueous solution(1). Kor. J. Env. Hlth. Soc. 24, 29-41
  12. Volesky, B. and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11, 235-250 https://doi.org/10.1021/bp00033a001