• Title/Summary/Keyword: nickel powder

Search Result 270, Processing Time 0.028 seconds

Preparation of Electrically Conductive Composites Filled with Nickel Powder and MWCNT Fillers (다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조)

  • Kim, Sunghoon;Park, Seonghwan;Kwon, Jaebeom;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.410-418
    • /
    • 2016
  • In this study, we prepared electrically conducting composites using epoxy resin of diglycidyl ether of bisphenol A (DGEBA) as a matrix, triethylenetetramine (TETA) as a hardener and nickel powder or multi-walled carbon nanotubes (MWCNTs) grafted with $-NH_2$ groups (MWCNT-$NH_2$) as electrically conducting fillers. Electrical conductivity of composite films were measured by coating on the slide glass with a doctor blade. We measured modification reactions of MWCNT and reaction of MWCNT-$NH_2$ with DGEBA epoxy resin by fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer (TGA) and elemental analyzer (EA). Morphology of composites was investigated by scanning electron microscope (SEM) and sheet resistances of composites were measured by 4-point probe. We found $(9.87{\pm}1.09){\times}10^4{\Omega}/sq$ of sheet resistance for epoxy composite containing both 40 wt% nickel powder and 0.5 wt% of MWCNT-$NH_2$ as fillers, equivalent to epoxy composite containing 53.3 wt% nickel powder only as a filler.

Effects of Tungsten Particle Size and Nickel Addition in DC arc Resistance of Cu-W Electrode

  • Kim, Bong-Seo;Jeong, Hyun-Uk;Lee, Hee-Woong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.68-72
    • /
    • 2004
  • The performance of copper-tungsten for electrodes used in an ultra high voltage interruption system was evaluated by means of an interruption test, which requires a large-scale apparatus and high cost. In this study, prior to the interruption test, the characteristics of a Cu-W electrode were estimated through the DC arc test, which is a simple, low cost procedure. The DC arc characteristics of a 20wt%Cu-80wt%W electrode were investigated with the change of tungsten powder size distribution and the addition of nickel. In specimens containing a high volume fraction of large sized tungsten particles, the relative density and hardness of sintered Cu-W electrodes increased while the electrical conductivity and the DC arc resistance decreased. Furthermore, the relative density became enhanced with the increase of the amount of nickel while the hardness and electrical conductivity diminished and the DC arc resistance worsened.

Die design for HIP'ing of Nickel-base Superalloys (초내열합금 HIP 성형을 위한 금형설계)

  • Lim J.S.;Yeom J.T.;Hou Bongliang;Park N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.139-142
    • /
    • 2004
  • Nickel base superalloys are widely used for high temperature applications due to heat resisting capability and corrosion resistance at high temperatures. Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720 and MM 247, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations fur low temperature plasticity deformation.

  • PDF

Development of Cube Texture in a Silver-Nickel Bi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.47-50
    • /
    • 1999
  • An Ag/Ni bi-layer sheet was fabricated by the combination of powder metallurgy, diffusion bonding, cold rolling and texture annealing processes. After heat treating the cold rolled thin Ag/Ni bi-layer sheet at $900^{\circ}C$ for 4h, the excellent cube texture was developed on nickel surface. Qualitative chemical analysis using EPMA showed that inter diffusions of Ni and Ag in Ag/Ni bi-layer composite were negligible. It showed that Ag can be used as a chemical barrier for Ni and vice versa.

  • PDF

A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition (스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Park Jeong-Won;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

Size Control of Spherical Nickel Powders Synthesized by Solution-Reduction Method (용액환원법에 의한 구형 니켈 분말의 입자 크기 제어)

  • Kwak, Hyo Jung;Nersisyan, Hayk;Won, Hyung Ill;Won, Chang Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • The reduction of $Ni(OH)_2$ by hydrazine-sodium phosphinate in water and water-diethylene glycol solutions for the preparation of spherical nickel particles has been studied at room temperature. The effect of reaction conditions on the size and morphology of Ni powder was revealed using SEM and XRD analysis technique. It was shown that in the presence of sodium phosphinate the reduction process become activated and a formation of Ni particles was completed within several minutes at room temperature. As a desired result spherical Ni powders with particles size from 0.07 to 2.0 mm were obtained.

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness (NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성)

  • Choi, Gyu-Chae;Chung, Kook-Chae;Kim, Young-Kuk;Cho, Young-Sang;Choi, Chul-Jin;Kim, Yang-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Recovery of Nickel Metal from the Spent FeCl$_3$ Etching Solution by Solvent Extraction and Chemical Reduction (FeCl$_3$ 에칭廢液으로부터 溶媒抽出과 化學沈澱에 의한 니켈金屬 回收)

  • Lee, Man-Seung;Kim, Myoung-Sik
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.48-54
    • /
    • 2005
  • Solvent extraction and chemical reduction experiments have been performed to separate iron and nickel from a spent FeCl$_3$ etching solution and to recover nickel metal. It was possible to separate iron and nickel by extracting the spent solution with Alamine336. At the O/A ratio of 7:1, iron extraction percentage of 99% was obtained. In the stripping of the loaded organic with 0.01 M HCl solution, iron stripping percentage of 99% was obtained when the A/O ratio was 7:1. When the pH of the raffinate was controlled to be 10.5, nickel metal powder with 99% purity was obtained by using hydrazine as a reducing agent at 100$^{\circ}C$. A process was suggested to recover nickel metal from the spent FeCl$_3$ solution and to regenerate etching solution.

Extra-fine Ni Powder for Diamond Tool Binder Applications

  • Stephenson, Thomas F.;Korotkin, Maria;Metcalfe, Shawn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.883-884
    • /
    • 2006
  • A new extra-fine grade Ni powder (XF Ni) has demonstrated increased sintering activity in Co-Fe-Ni binders for diamond tool applications. XF Ni has the advantage of significantly lower cost than XF Co. Up to 30% of XF Co was substituted with XF Ni while maintaining comparable apparent hardness and transverse rupture strength to pure Co binders. Ni substantially increased the diffusion of Fe. Diamond tool producers can take advantage of the improved sintering properties of XF Ni powder to substantially lower material costs.

  • PDF