Size Control of Spherical Nickel Powders Synthesized by Solution-Reduction Method

용액환원법에 의한 구형 니켈 분말의 입자 크기 제어

  • Kwak, Hyo Jung (Rapidly Solidified Materials Research Center(RASOM), Chungnam National University) ;
  • Nersisyan, Hayk (Rapidly Solidified Materials Research Center(RASOM), Chungnam National University) ;
  • Won, Hyung Ill (Rapidly Solidified Materials Research Center(RASOM), Chungnam National University) ;
  • Won, Chang Whan (Rapidly Solidified Materials Research Center(RASOM), Chungnam National University)
  • 곽효정 (충남대학교 급속응고신소재연구소) ;
  • ;
  • 원형일 (충남대학교 급속응고신소재연구소) ;
  • 원창환 (충남대학교 급속응고신소재연구소)
  • Received : 2008.08.28
  • Published : 2009.01.28

Abstract

The reduction of $Ni(OH)_2$ by hydrazine-sodium phosphinate in water and water-diethylene glycol solutions for the preparation of spherical nickel particles has been studied at room temperature. The effect of reaction conditions on the size and morphology of Ni powder was revealed using SEM and XRD analysis technique. It was shown that in the presence of sodium phosphinate the reduction process become activated and a formation of Ni particles was completed within several minutes at room temperature. As a desired result spherical Ni powders with particles size from 0.07 to 2.0 mm were obtained.

Keywords

References

  1. D. W. Jung, S. M. Oh, D. W. Park, J. Korean chem. Eng. Res. 46. 701 (2008)
  2. C. W. Won, J. H. Lee, H. I. Won, H. H. Lee, J. Kor. Inst. Met. & Mater. 44. 186 (2006)
  3. H. K. Lee, J. Mater. Res. 11. 8 (2001)
  4. S. Amourso, G. Ausanio, C. de Lisio, V. Iannotti, M. Vitiello, X. Wang, L. lanotte, Appl. Surf. Sci. 247, 71-5 (2005) https://doi.org/10.1016/j.apsusc.2005.01.054
  5. Y. Koltypin, G. Katabi, X. Cao, R. Prozorov, A. Gedanken, J. Non-Cryst. Solids 201, 159 (1966) https://doi.org/10.1016/0022-3093(96)00184-6
  6. S. Kapoor, H. Salunke, A. Tripathi, S. Kulshreshta, J. Mittal, Mater. Res. Bull. 35, 143 (2000) https://doi.org/10.1016/S0025-5408(00)00179-3
  7. D. Chen, S. Wu, Chem. Mater. 12, 1354 (2000) https://doi.org/10.1021/cm991167y
  8. F. Fievet, J. Lagier, B. Blin, B. Meaudoin, M. Figlarz, Solid State Ionics 32/33,198 (1989) https://doi.org/10.1016/0167-2738(89)90222-1
  9. Y. Li, L. Li, H. Liao, H. Wang, Y. Qian, J. Mater. Chem. 9, 2675 (1999) https://doi.org/10.1039/a904686k
  10. A. Degen, J. Macek, Nanostruct. Mater. 12, 225 (1999) https://doi.org/10.1016/S0965-9773(99)00104-X
  11. K. P. Gibson, Science 267, 1338 (1995) https://doi.org/10.1126/science.267.5202.1338
  12. T. Hayashi, T. Ohno, S. Yatsuda, R. Uyeda, Jpn. J. Appl. Phys. 16, 705 (1977) https://doi.org/10.1143/JJAP.16.705
  13. L. Dong, Z. Zhang, S. Jin, W. Sun, Y. Chuang, Nanostruct. Mater. 10, 585(1998) https://doi.org/10.1016/S0965-9773(98)00101-9
  14. L. Aymard, B. Dumont, G. Viau, J. Alloys Comp. 242, 108 (1996) https://doi.org/10.1016/0925-8388(96)02285-2
  15. C. W. Won, J. H. Bae, J. H. Lee, B. B. Kim, J. Kor. Int. of Powder metal 44, 186 (2004)
  16. K. Shafi, A. Gedanken, R. Prozorov, J. Mater. Chem. 8, 769 (1998) https://doi.org/10.1039/a706871i
  17. P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Vincent, F. Fievet, J. Mater. Sci. 35, 3767 (2000) https://doi.org/10.1023/A:1004864927169
  18. S. L. Chie, K. Takada, K. Takashima, O. Sakurai, K. Shinozaki, N. Mizutani, J. Mater. Sci. 34, 1313 (1999) https://doi.org/10.1023/A:1004546014867
  19. E. Y Choi, Y.B Lee, S.Y Yoon, K.H Kim, J.C Kim, Y.M. Rhyim, H.K Kim, Y.D Kim, Korean Ceramic Society, 42, 432 (2005) https://doi.org/10.4191/KCERS.2005.42.6.432
  20. K. M Kim, J. H Lee, S. M Yoon, Y. K Lee, H. C Lee, J. Y Choi, Korean Ceramic Society 42, 649 (2005) https://doi.org/10.4191/KCERS.2005.42.10.649
  21. D. H Kim, Y. M Park, Y. J Kim, H. H Jin, H. C Park, S. Y Yoon, Kor. J. mater. Res. 14, 725 (2004) https://doi.org/10.3740/MRSK.2004.14.10.725
  22. Z. Li, C. Han, J. Shen, J. Mater. Sci. 41, 3473 (2006) https://doi.org/10.1007/s10853-005-5874-z
  23. J. Shen, Q. Zhang, Z. Li, Y. Chen, J. Mater. Sci. Letters 15, 715 (1996) https://doi.org/10.1007/BF00264124