• Title/Summary/Keyword: nickel deposition

Search Result 234, Processing Time 0.026 seconds

Nickel Amalgamation by Electro-deposition Process Using Mercury Cathode and Its Properties (수은 음극 상 전착에 의한 니켈 아말감의 제조와 그 물성)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Nickel amalgam was Prepared by the electro-deposition with mercury cathode in a modified Watts bath. Homogeneous nickel amalgam was obtained. The fluidity of the amalgam decreased gradually with increased nickel quantity and become solid finally. Nickel powders of sub-micron size were obtained by a distillation of mercury from the amalgam. The characterization of the nickel amalgam was studied by SEM and x-ray diffractometry.

Studies on Electroless Nickel Plating on Alumina Ceramics(I) on Empirical Deposition Rate in Electroless Nickel Plating (알루미나 세라믹스 표면에 무전해 환원 니켈막의 형성에 관한 연구(I) 무전해 니켈도금의 실험적 석출속도에 관한 연구)

  • Kim, Yong-Dai;Lee, Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 1986
  • The electroless nickel plating on high alumina ceramics was performed in the bath containing nickel chloride, sodium hypophosphite and mono- or bi-carboxylic acid as a complexing agent in order to examine the empirical rate law as well as the effects of the complexing agent, plating temperature and pH on the rate of deposition. Adding the carboxylic acid to the plating bath, the rate of deposition was increased considerably, and each of the complexing agents showed a maximum deposition rate plateau around a particular concentration of the complexing agent. The rate of deposition was increased with increasing either temperature or pH, but microstructure of the surface became more rough. Furthermore, empirical rate law of the elecltroless nickel deposition on high alumina ceramics was discussed with the activation energy and other rate parameters calculated.

  • PDF

A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe (황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구)

  • 이응조;노재호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

ELECTROLESS PLATING OF NICKEL FOR MICRO-STRUCTURE FABRICATION

  • Jin, Huh;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • Electroless plating nickel has superior mechanical property to electroplated nickel. Furthermore nickel can be coated on nonconducting substrate. In this research, electroless plating of nickel were conducted in different bath condition to find optimum conditions of electroless nickel plating for MEMS applications. The selectivity of activation method on several substrates was investigated. The effects of nickel concentration, reducing agent concentration and inhibitor on deposition rate were investigated. The effect of pH on deposition rate and content of phosphorous in deposited nickel was also investigated.

  • PDF

Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors (CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름)

  • Kim, Young-Ha;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF

Porous Nickel-Tin Nano-Dendritic Electrode for Rechargeable Lithium Battery (리튬 이차 전지를 위한 다공성 니켈-주석 나노 수지상 전극)

  • Jung, Hye-Ran;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.592-599
    • /
    • 2010
  • A porous nickel-tin nano-dendritic electrode, for use as the anode in a rechargeable lithium battery, has been prepared by using an electrochemical deposition process. The adjustment of the complexing agent content in the deposition bath enabled the nickel-tin alloys to have specific stoichiometries while the amount of acid, as a dynamic template for micro-porous structure, was limited to a certain amount to prevent its undesirable side reaction with the complexing agent. The ratios of nickel to tin in the electro-deposits were nearly identical to the ratios of nickel ion to tin ion in the deposition bath; the particle changed from spherical to dendritic shape according to the tin content in the deposits. The nickel to tin ratio and the dendritic structure were quite uniform throughout the thickness of the deposits. The resulting nickel-tin alloy was reversibly lithiated and delithiated as an anode in rechargeable lithium battery. Furthermore, the resulting anode showed much more stable cycling performance up to 50 cycles, as compared to that resulting from dense electro-deposit with the same atomic composition and from tin electrodeposit with a similar porous structure. From the results, it is expected that highly-porous nickel-tin alloys presented in this work could provide a promising option for the high performance anode materials for rechargeable lithium batteries.

Electroplating of Nickel on Nickel Titanate Modified Mild Steel Surface

  • Beenakumari, K.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.57-60
    • /
    • 2013
  • Nickel is a good electrocatalytic metal and nickel electrodes find many applications in different electrochemical fields. The nickel plated electrodes were prepared by electro-deposition technique on mild steel surface modified with in-situ deposition of nickel titanate. The SEM images shows that the nickel plating on nickel titanate modified mild steel shows better adherence than the nickel plating on bare mild steel surfaces. The extent of polarization of the nickel plating on mild steel with nickel titanate was lower than that of nickel plating on mild steel. The incorporation of nickel titanate on mild steel surface before nickel plating enhances physical, chemical and electrochemical properties of the plating film.

Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma

  • Ji, Su-Hyeon;Jang, Woo-Sung;Son, Jeong-Wook;Kim, Do-Heyoung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2474-2479
    • /
    • 2018
  • Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel ($Ni(EtCp)_2$) and $O_2$ plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, $O_2$ plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of $100-325^{\circ}C$ and a growth rate of $0.037{\pm}0.002nm$ per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.

FORMATION OF AMORPHOUS NICKEL-PHOSPHORUS ALLOY FILM

  • Yamashita, Tsugito;Komiyama, Toyohiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.720-723
    • /
    • 1996
  • The behavior of electrodeposition of amorphous nickel-phosphorus has been studied from the point of deposition mechanism, kinetic parameters, morphology and formation of alloy films. The electorode reaction and electrode kinetics of deposition of nickel were significantly influenced by the content of phosphorus. The cathodic deposition of nickel-phosphorus alloy might be governed by the diffusion process of phosphorous acid. The direction of growth layer of the nickel-phosphorus alloy was different with substrate material. The formation of nickel-phosphorus alloy films was affected considerably by the solution compositions, electrolytic conditions and properties of the material as an underlayer.

  • PDF

The Effects of Additives and Residual Stresses on the Electroless Nickel Plating on Carbon Substrate (첨가제와 잔류응력이 탄소 기지상 무전해 니켈도금에 미치는 영향)

  • Cheon, So-Young;Rhym, Young-Mok;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2011
  • Electroless nickel platings on carbon substrate were investigated for porous MCFC electrode applications. Acidic bath and alkaline bath were used in electroless nickel plating on carbon substrates. The rate of electroless plating in alkaline bath was faster than that in acidic bath. As pH was increased, the deposition rate was increased in both baths and the content of phosphorus in nickel deposit was decreased. The residual stresses of nickel deposit from acidic bath showed the compressive stress and on the other hand those from alkaline bath showed the high tensile stress. High tensile internal stress in nickel deposit caused the cracks over pH 11. Thiourea was added to both acidic and alkaline bath. The deposition rate of nickel was increased upto 0.5 ppm of thiourea and decreased. The maximum concentration of thiourea for the electroless nickel plating on carbon substrate was 1.5 ppm in both acidic and alkaline bath. Succinic acid was added to acidic bath. Addition of succinic acid up to 5 g/L increased the deposition rate of nickel and beyond which the deposition rate was decreased and maintained.