• 제목/요약/키워드: newtonian flow

검색결과 326건 처리시간 0.023초

젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구 (Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet)

  • 황태진;이인철;구자예
    • 한국분무공학회지
    • /
    • 제15권3호
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.

평행평판사이의 입구길이영역에서 자성유체의 유동해석 (Flow Analysis of Magnetic Fluid in Inlet Length Region between Parallel Plates)

  • 박정우;박기태;김유준;서이수
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.7-12
    • /
    • 2008
  • It is attempted, in this study, to analyze the movement of the fluidity of polar magnetic fluid and to relate Newtonian fluid with the Inlet Length of infinity plates when distance between parallel plates is L. A numerical analysis is performed for the variation of inlet length when magnetic effect parameter and polar effect parameter which give special advantages to magnetic fluid are increased. From the result of numerical analysis, we confirmed that the inlet length shortens as the flux around the center axis is accelerated and the flux around the surface of a wall is controlled as the magnetic effect parameter and the polar effect parameter are increased.

고분자량 점도지수향상제가 첨가된 오일의 음향점도 특성 (Acoustic Viscosity Characteristics of Oils with High Molecular Weight VI Improver Additives)

  • 공호성;;한흥구
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.236-242
    • /
    • 2009
  • Oil viscosity is one of the important parameters for machinery condition monitoring. Basically, it is expressed as kinematic viscosity measured by capillary flow and dynamic or absolute viscosity measured by rotary shear viscometry. Recently, acoustic wave techniques appear in the market, measuring viscosity as the product of dynamic viscosity and density. For Newtonian fluids, knowledge of density allows conversion from one viscosity parameter to the other at a specific shear rate and temperature. In this work, oil samples with different chain lengths of viscosity index (VI) improvers and concentrations were examined by different viscometric techniques. Results showed that acoustic viscosity measurements give misleading results for oil samples with high molecular weight VI improvers and at low temperatures ${\leq}40^{\circ}C$.

Performance of Hydrostatic/hybrid Journal Symmetric/asymmetric Bearings using Slot-entry Restrictor Under Couple Stress Lubricants

  • Ram, Nathi;Yadav, Saurabh Kumar;Sharma, Satish C.
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.187-201
    • /
    • 2017
  • This paper presents the impact of couple stress lubricant on performance of slot-entry hydrostatic/hybrid journal symmetric/asymmetric bearings. Reynolds Equation using Finite Element Technique has been solved for the flow of couple stress and Newtonian lubricants in bearings. The results have been computed for concentric design pressure ratio(${\beta}^{\ast}=0.5$), slot width ratio (SWR = 0.25) and chosen parameters of couple stress lubricant ${\bar{l}}=5$, 10, 15. It is observed that numerically simulated outcomes for slot-entry journal bearings, considering the influence of couple stress lubricant indicate a substantial improvement in the performance of the bearing.

A phenomenological approach to suspensions with viscoelastic matrices

  • Tanner Roger I.;Qi Fuzhong
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.149-156
    • /
    • 2005
  • A simple constitutive model for viscoelastic suspensions is discussed in this paper. The model can be used to predict the rheological properties (relative viscosity and all stresses) for viscoelastic suspensions in shear and elongational flow, and the constitutive equations combine a 'viscoelastic' behaviour component and a 'Newtonian' behaviour component. As expected, the model gives a prediction of positive first normal stress difference and negative second normal stress difference; the dimensionless first normal stress difference strongly depends on the shear rate and decreases with the volume fraction of solid phase, but the dimensionless second normal stress difference (in magnitude) is nearly independent of the shear rate and increases with the volume fraction. The relative viscosities and all the stresses have been tested against available experimental measurements.

공기 혼합오일에 대한 고속 저어널 베어링 열유체 윤활 해석 (Thermohydrodynamic Bubbly Lubrication Analysis of High-Speed Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.321-334
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing Is examined by thermohydrodynamic lubrication theory to lubrication with mixtures of a Newtonian liquid and an ideal gas. For this purpose, analytical models for viscosity and density of aerated oil in fluid-film bearing are applied. Convection to the walls, mixing with supply oil and re-circulating oil, and some degree of journal misalignment are considered. The results show that deliberate oil aeration can increase the load capacity of high-speed plain Journal bearing. And the load capacity is increased more by oil aeration under the conditions of shaft misalignment and higher speed.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.

전단 흐름을 갖는 서스펜션 내부 나노 입자의 유변학적 특성 연구 (Rheological Modeling of Nanoparticles in a Suspension with Shear Flow)

  • 김구;후카이 준;히로나카 슈지
    • 공업화학
    • /
    • 제30권4호
    • /
    • pp.445-452
    • /
    • 2019
  • Shear thickening is an intriguing phenomenon in the fields of chemical engineering and rheology because it originates from complex situations with experimental and numerical measurements. This paper presents results from the numerical modeling of the particle-fluid dynamics of a two-dimensional mixture of colloidal particles immersed in a fluid. Our results reveal the characteristic particle behavior with an application of a shear force to the upper part of the fluid domain. By combining the lattice Boltzmann and discrete element methods with the calculation of the lubrication forces when particles approach or recede from each other, this study aims to reveal the behavior of the suspension, specifically shear thickening. The results show that the calculated suspension viscosity is in good agreement with the experimental results. Results describing the particle deviation, diffusivity, concentration, and contact numbers are also demonstrated.

Modeling reaction injection molding process of phenol-formaldehyde resin filled with wood dust

  • Lee, Jae-Wook;Kwon, Young-Don;Leonov, A.I.
    • Korea-Australia Rheology Journal
    • /
    • 제20권2호
    • /
    • pp.59-63
    • /
    • 2008
  • A theoretical model was developed to describe the flow behavior of a filled polymer in the packing stage of reaction injection molding and predict the residual stress distribution of thin injection-molded parts. The model predictions were compared with experiments performed for phenol-formaldehyde resin filled with wood dust and cured by urotropine. The packing stage of reaction injection molding process presents a typical example of complex non-isothermal flow combined with chemical reaction. It is shown that the time evolution of pressure distribution along the mold cavity that determines the residual stress in the final product can be described by a single 1D partial differential equation (PDE) if the rheological behavior of reacting liquid is simplistically described by the power-law approach with some approximations made for describing cure reaction and non-isothermality. In the formulation, the dimensionless time variable is defined in such a way that it includes all necessary information on the cure reaction history. Employing the routine separation of variables made possible to obtain the analytical solution for the nonlinear PDE under specific initial condition. It is shown that direct numerical solution of the PDE exactly coincides with the analytical solution. With the use of the power-law approximation that describes highly shear thinning behavior, the theoretical calculations significantly deviate from the experimental data. Bearing in mind that in the packing stage the flow is extremely slow, we employed in our theory the Newtonian law for flow of reacting liquid and described well enough the experimental data on evolution of pressure.

Finite element analysis of elastic solid/Stokes flow interaction problem

  • Myung, Jin-Suk;Hwang, Wook-Ryol;Won, Ho-Youn;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제19권4호
    • /
    • pp.233-242
    • /
    • 2007
  • We performed a numerical investigation to find out the optimal choice of the spatial discretization in the distributed-Lagrangian-multiplier/fictitious-domain (DLM/FD) method for the solid/fluid interaction problem. The elastic solid bar attached on the bottom in a pressure-driven channel flow of a Newtonian fluid was selected as a model problem. Our formulation is based on the scheme of Yu (2005) for the interaction between flexible bodies and fluid. A fixed regular rectangular discretization was applied for the description of solid and fluid domain by using the fictitious domain concept. The hydrodynamic interaction between solid and fluid was treated implicitly by the distributed Lagrangian multiplier method. Considering a simplified problem of the Stokes flow and the linearized elasticity, two numerical factors were investigated to clarify their effects and to find the optimum condition: the distribution of Lagrangian multipliers and the solid/fluid interfacial condition. The robustness of this method was verified through the mesh convergence and a pseudo-time step test. We found that the fluid stress in a fictitious solid domain can be neglected and that the Lagrangian multipliers are better to be applied on the entire solid domain. These results will be used to extend our study to systems of elastic particle in the Stokes flow, and of particles in the viscoelastic fluid.