Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.448-450
/
2016
정보기술과 디지털 경제의 확산으로 대규모의 데이터가 생산되는 정보화시대에서 빅 데이터의 중요성이 강조되고 있으며 다양한 분야에서 이를 응용하고 있다. 빅 데이터 분석도구인 R은 통계 기반의 정보 분석을 가능하게 하는 언어와 환경이다. 본 논문에서는 R을 이용하여 기상뉴스에 나타난 기상관련 빅 데이터를 분석한다. 다양한 뉴스에서 기상 관련 데이터를 수집하고 어떠한 텍스트가 분포되어 있는지 빈도 조사를 수행한다.
Generally, either caption-based search method or content-based search methods is used to retrieve video information. However, each search method has its limitations. Caption-based search is apt to lose consistency as for user's subjects, and content-based search is hard to extract general means. To enhance efficiency and correctness as for complementing each other, we propose the Integrated Video Data Model(IVDM) which integrates the two search methods, to device the model, we analyze video data and construct the structure of video information hierarchically. IVDM supports caption-based search as assigning meta-data by analyzing thematic-unit in the higher level, and also supports content-based search as extracting feature data by analyzing the content of video data in the lower level. We design Object-Oriented database schema of news video, based-on the IVDM. And we provide 4-type of queries and query processing algorithm to retrieve news video information.
Purpose: In the 4th industrial revolution, services that incorporate various smart technologies in the tourism sector have begun to gain popularity. Accordingly, academic discussions on smart tourism have also started to become active in various fields. Despite recent research, the definition of smart tourism is still ambiguous, and it is not easy to differentiate its scope or characteristics from traditional tourism concepts. Thus, this study aims to analyze the perception of smart tourism exposed online to identify the current point of smart tourism in Korea and present the research direction for conceptualizing smart tourism suitable for the domestic situation. Research design, data, and methodology: This study analyzes the perception of smart tourism exposed online based on 20,198 news data from portal sites over the past six years. Data on words used with smart tourism were collected from the leading portal sites Naver, Daum, and Google. Text mining techniques were applied to identify the social awareness status of smart tourism. Network analysis was used to visualize the results between words related to smart tourism, and CONCOR analysis was conducted to derive clusters formed by words having similarity. Results: As a result of keyword analysis, the frequency of words related to the development and construction of smart tourism areas was high. The analysis of the centrality of the connection between words showed that the frequency of keywords was similar, and that the words "smartphones" and "China" had relatively high connection centrality. The results of network analysis and CONCOR indicated that words were formed into eight groups including related technologies, promotion, globalization, service introduction, innovation, regional society, activation, and utilization guide. The overall results of data analysis showed that the development of smart tourism cities was a noticeable issue. Conclusions: This study is meaningful in that it clearly reflects the differences in the perception of smart tourism between online and research trends despite various efforts to develop smart tourism in Korea. In addition, this study highlights the need to understand smart tourism concepts and enhance academic discussions. It is expected that such academic discussions will contribute to improving the competitiveness of smart tourism research in Korea.
The ex-post evaluation of governmental crisis management is an important issues since it is necessary to prepare for the future disasters and becomes the cornerstone of our success as well. In this paper, we propose a data cube model with data mining techniques for the analysis of governmental crisis management strategies and ripple effects of foot-and-mouth(FMD) disease using the online news articles. Based on the construction of the data cube model, a multidimensional FMD analysis is performed using on line analytical processing operations (OLAP) to assess the temporal perspectives of the spread of the disease with varying levels of abstraction. Furthermore, the proposed analysis model provides useful information that generates the causal relationship between crisis response actions and its social ripple effects of FMD outbreaks by applying association rule mining. We confirmed the feasibility and applicability of the proposed FMD analysis model by implementing and applying an analysis system to FMD outbreaks from July 2010 to December 2011 in South Korea.
Nowadays as the use of mobile communication devices such as smart phones and tablets and the use of Computer is expanded, data is being collected exponentially on the Internet. In addition, due to the development of SNS, users can freely communicate with each other and share information in various fields, so various opinions are accumulated in the from of big data. Accordingly, big data analysis techniques are being used to find out the difference between the response of the general public and the response of the media. In this paper, we analyzed the public response in SNS about child allowance and childbirth grant and analyzed the response of the media. Therefore we gathered articles and comments of users which were posted on Twitter for a certain period of time and crawling the news articles and applied sentiment analysis. From these data, we compared the opinion of the public posted on SNS with the response of the media expressed in news articles. As a result, we found that there is a different response to some national policy between the public and the media.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.101-103
/
1998
뉴스기사를 구성하는 NOD데이터는 VOD(Video on Demand) 데이터와는 달리 미디어의 종류 및 크기, 시간적인 접근 지역성, 사용자와 상호 작용성 등의 차이점을 가질 뿐만 아니라 새로운 뉴스기사가 수시로 생성되고 사용자가 인기도가 높은 기사와 최신의 뉴스기사에 더 많이 접근하는 특성을 가진다. 본 논문에서는 현재 서비스중인 전자신문의 로그파일을 분석하여 NOD 뉴스기사의 인기도가 Zipf분포와 다름을 보이고, 뉴스기사의 생명주기Lifr Cycle)에 따른 접근 확률분포 제시한다. NOD 데이터의 접근 편기성으로 인하여 데이터 캐싱을 통한 NOD 서버의 성능 향상을 기대할 수 있으나 뉴스기사의 생명주기가 짧고 접근시간대별로 사용자 접근형태가 변하는 등의 이유로 단순히 인기도만 고려한 캐싱은 빈번한 데이터 재배치 문제로 인해 높은 캐시 관리비용을 야기한다. 따라서 본 논문에서는 뉴스 기사의 접근 편기성에 나타나는 인기도(popularity)와 생명주기를 조합한 척도를 제안하고 이를 이용한 재배치를 제안한다.
It is impossible for any human being to analyze the more than 500 million tweets that are generated per day. Lexical ambiguities on Twitter make it difficult to retrieve the desired data and relevant topics. Most of the solutions for the word sense disambiguation problem rely on knowledge base systems. Unfortunately, it is expensive and time-consuming to manually create a knowledge base system, resulting in a knowledge acquisition bottleneck. To solve the knowledge-acquisition bottleneck, a topic signature is used to disambiguate words. In this paper, we evaluate the effectiveness of various features of newspapers on the topic signature extraction for word sense discrimination in tweets. Based on our results, topic signatures obtained from a snippet feature exhibit higher accuracy in discriminating company names than those from the article body. We conclude that topic signatures extracted from news articles improve the accuracy of word sense discrimination in the automated analysis of tweets.
Proceedings of the Korea Multimedia Society Conference
/
1998.04a
/
pp.323-327
/
1998
컴퓨터와 통신망 기술의 발전으로 많은 언론 기관에서 전자신문 서비스를 제공하고 있다. 그러나 현재 서비스되는 전자신문은 텍스트 위주의 정적인 정보를 주고 서비스 하며, 사용자가 필요한 정보를 찾아 다니는 pull 기술을 기반으로 서비스한다. 그리고 사용자 맞춤 기능을 제공하기 못하므로, 불필요한 정보를 사용자에게 전송함으로써 시스템 자원을 낭비하는 단점을 가지고 있다. 본 논문에서는 멀티미디어 데이터를 지원하는 NOD(News On Demand)시스템에서 텍스트 데이터 뿐아니라 오디오/비디오 데이터를 push 하므로써 서버의 load를 분배시키고 사용자에게 실시간성을 제공하는 NOD 분배 서버를 설계하고 프로토타입을 구현하였다. 특히 본 논문에서는 대용량 데이터인 오디오/비디오 데이터를 사용자 시스템으로 Push할 때, 사용자 시스템의 디스크 공간상태 등을 고려하여 실시간성을 유지할 수 있는 적정 Push 량을 시뮬레이션을 통해 측정하였다.
In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.
Proceedings of the Korean Institute of Building Construction Conference
/
2021.05a
/
pp.277-278
/
2021
Conflict in public construction projects has increased for the last decades. It not only entails enormous social and economic costs but also makes stakeholders suffer from unnecessary expense and time waste. This study defines the the conflict index for public construction projects based on news data, and calculates conflict index for representative past and current public construction projects that has been deepened conflicts at the national level. The result indicates that the major conflict issue of the 2nd Jeju Airport Project are the environment and location whereas that of the Gaduk New Airport Project are the safety, location and necessity. This approach is expected to enable construction project managers to manage conflicts quantitatively based on comparing with past cases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.