• Title/Summary/Keyword: news data

Search Result 894, Processing Time 0.026 seconds

The relationship between public acceptance of nuclear power generation and spent nuclear fuel reuse: Implications for promotion of spent nuclear fuel reuse and public engagement

  • Roh, Seungkook;Kim, Dongwook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2062-2066
    • /
    • 2022
  • Nuclear energy sources are indispensable in cost effectively achieving carbon neutral economy, where public opinion is critical to adoption as the consequences of nuclear accident can be catastrophic. In this context, discussion on spent nuclear fuel is a prerequisite to expanding nuclear energy, as it leads to the issue of radioactive waste disposal. Given the dearth of study on spent nuclear fuel public acceptance, we use text mining and big data analysis on the news article and public comments data on Naver news portal to identify the Korean public opinion on spent nuclear fuel. We identify that the Korean public is more interested in the nuclear energy policy than spent nuclear fuel itself and that the alternative energy sources affect the position towards spent nuclear fuel. We recommend relating spent nuclear fuel issue with nuclear energy policy and environmental issues of alternative energy sources to further promote spent nuclear fuel.

News Big Data Analysis of Media Companies related to Lifelong Education for the Disabled (장애인 평생교육 관련 언론사 뉴스 빅데이터 분석)

  • Kwon, Choong-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.183-184
    • /
    • 2022
  • 본 연구는 장애인 평생교육 관련 언론사 뉴스 빅데이터를 한국언론재단의 빅카인즈(BIGKinds) 시스템을 이용하여 분석하였다. 본 연구에서는 2000년 1월 1일부터 2020년 12월 31일까지 20년간, 총 54개 언론사에서 보도한 '장애인 평생교육' 관련 뉴스 기사들을 추출하였다. 그 분석대상 뉴스 빅데이터를 대상으로 키워드 트렌드 분석, 언어 네트워크 지도 구현, 연관어 분석(워드클라우드 제시) 등을 진행하였다. 본 연구 결과는 장애인 평생교육 관련 정책 입안 연구 및 실증적인 연구(평생교육 참여 요인 및 효과 등)의 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

『Superintendent's Direct Election System』 shown in Media News Big Data (언론사 뉴스 빅데이터를 통해 살펴본 『교육감 직선제』)

  • Kwon, Choong-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.351-354
    • /
    • 2022
  • 본 연구는 최근 2022년 6월 1일에 실시된 전국 시도교육청 교육감 선거를 계기로 진행된 연구이다. 본 연구의 목적은 2010년 1월 1일부터 2022년 6월 10일까지 '교육감 직선제'를 다룬 언론사 기사들을 분석하여 그 결과를 객관적으로 제시하는 것이다. 분석 대상은 2010년 1월 1일부터 2022년 6월 10일까지 기간을 설정한 후, '교육감'과 '직선제' 2개의 용어가 모두 포함된 국내 54개 주요 언론사 뉴스 기사들(5,610건)이다. 본 연구에서는 뉴스 빅데이터 분석시스템인 빅카인즈(BIGKinds) 서비스를 적극적으로 이용하여 뉴스 트렌드 분석, 네트워크(관계도) 분석, 연관어 분석 등을 진행하였다. 본 연구자료는 관련 학문 연구자와 교육 현장 종사자들에게 시사점을 줄 수 객관적인 자료로 활용될 것이다. 본 연구는 향후 지방교육자치와 교육감 선거의 발전적 모델 탐색을 위한 다양한 연구 과정으로 확대 전개하고자 한다.

  • PDF

COVID-19, Social Distancing and Social Media: Evidence from Twitter and Facebook Users in Korea

  • Jin Seon Choe;Jaecheol Park;Sojung Yoon
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.785-807
    • /
    • 2020
  • The novel Coronavirus disease 2019 (COVID-19) is unprecedentedly changing the world since its outbreak in late 2019. Using the collected the data related to COVID-19 and the social media user data from a mobile application market research agency from January 25 to April 7, this study empirically examines the effect of the number of confirmed COVID-19 cases worldwide, the number news COVID-19, and the enforcement of social distancing measures on the daily active users (DAU) of two social media services - Twitter and Facebook - in South Korea. There are three important findings from the results of econometric analysis. First, the number of confirmed COVID-19 cases worldwide has a negative effect on the DAU of social media. Second, the number of COVID-19 news is negatively associated with the DAU of social media. Finally, the implementation of social distancing measures has no significant effect on the DAU of the social media. Theoretical implications and managerial guidelines are also discussed.

The Prediction of Cryptocurrency on Using Text Mining and Deep Learning Techniques : Comparison of Korean and USA Market (텍스트 마이닝과 딥러닝을 활용한 암호화폐 가격 예측 : 한국과 미국시장 비교)

  • Won, Jonggwan;Hong, Taeho
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2021
  • In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.

Exploring Issues Related to the Metaverse from the Educational Perspective Using Text Mining Techniques - Focusing on News Big Data (텍스트마이닝 기법을 활용한 교육관점에서의 메타버스 관련 이슈 탐색 - 뉴스 빅데이터를 중심으로)

  • Park, Ju-Yeon;Jeong, Do-Heon
    • Journal of Industrial Convergence
    • /
    • v.20 no.6
    • /
    • pp.27-35
    • /
    • 2022
  • The purpose of this study is to analyze the metaverse-related issues in the news big data from an educational perspective, explore their characteristics, and provide implications for the educational applicability of the metaverse and future education. To this end, 41,366 cases of metaverse-related data searched on portal sites were collected, and weight values of all extracted keywords were calculated and ranked using TF-IDF, a representative term weight model, and then word cloud visualization analysis was performed. In addition, major topics were analyzed using topic modeling(LDA), a sophisticated probability-based text mining technique. As a result of the study, topics such as platform industry, future talent, and extension in technology were derived as core issues of the metaverse from an educational perspective. In addition, as a result of performing secondary data analysis under three key themes of technology, job, and education, it was found that metaverse has issues related to education platform innovation, future job innovation, and future competency innovation in future education. This study is meaningful in that it analyzes a vast amount of news big data in stages to draw issues from an education perspective and provide implications for future education.

Analysis of YouTube's role as a new platform between media and consumers

  • Hur, Tai-Sung;Im, Jung-ju;Song, Da-hye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.53-60
    • /
    • 2022
  • YouTube realistically shows fake news and biased content based on facts that have not been verified due to low entry barriers and ambiguity in video regulation standards. Therefore, this study aims to analyze the influence of the media and YouTube on individual behavior and their relationship. Data from YouTube and Twitter are randomly imported with selenium, beautiful soup, and Twitter APIs to classify the 31 most frequently mentioned keywords. Based on 31 keywords classified, data were collected from YouTube, Twitter, and Naver News, and positive, negative, and neutral emotions were classified and quantified with NLTK's Natural Language Toolkit (NLTK) Vader model and used as analysis data. As a result of analyzing the correlation of data, it was confirmed that the higher the negative value of news, the more positive content on YouTube, and the positive index of YouTube content is proportional to the positive and negative values on Twitter. As a result of this study, YouTube is not consistent with the emotion index shown in the news due to its secondary processing and affected characteristics. In other words, processed YouTube content intuitively affects Twitter's positive and negative figures, which are channels of communication. The results of this study analyzed that YouTube plays a role in assisting individual discrimination in the current situation where accurate judgment of information has become difficult due to the emergence of yellow media that stimulates people's interests and instincts.

A Thematic Analysis of Nurses' Work-Family Balance in the Korean Nurses Association News (간호사신문에 게재된 일-가정 양립 주제분석)

  • Kim, Miyoung;Lee, Kyoung Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.446-457
    • /
    • 2016
  • This study analyzed the Korean nurses association news described nurses' work-family balance for fifteen years by drawing on the qualitative thematic approach. From September 14, 2012 to February 10, 2015, data were collected by searching news articles associated with nurses' work and family balance published from 2000 to 2014 in the Korean nurses' association news online. A total of 73 news articles were used for data analysis. Two themes and ten sub-themes were derived; under the first theme of the government policy on work-family balance, the 'policies of maternity leave', 'parenting support', 'working condition improvement', and 'family-friendly culture' were identified as the sub-themes. For the second theme of Korean nurses association activities on work-family balance, the 'activities for various working shifts', 'constructing 24 hours childcare facilities', 'supporting unemployed nursing workforce development', 'healthy birth and parenting environment', 'family-friendly work environment', and 'securing nurses for nursing shortage' were identified as sub-themes. The Korean nurses association news in terms of work-family balance providing a voice for nurses regarding the benefit of maternity leave, increasing awareness of gender equality from a gender perspective, and leading the public attention to it in depth.

A Study on Automatic Classification of Newspaper Articles Based on Unsupervised Learning by Departments (비지도학습 기반의 행정부서별 신문기사 자동분류 연구)

  • Kim, Hyun-Jong;Ryu, Seung-Eui;Lee, Chul-Ho;Nam, Kwang Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.345-351
    • /
    • 2020
  • Administrative agencies today are paying keen attention to big data analysis to improve their policy responsiveness. Of all the big data, news articles can be used to understand public opinion regarding policy and policy issues. The amount of news output has increased rapidly because of the emergence of new online media outlets, which calls for the use of automated bots or automatic document classification tools. There are, however, limits to the automatic collection of news articles related to specific agencies or departments based on the existing news article categories and keyword search queries. Thus, this paper proposes a method to process articles using classification glossaries that take into account each agency's different work features. To this end, classification glossaries were developed by extracting the work features of different departments using Word2Vec and topic modeling techniques from news articles related to different agencies. As a result, the automatic classification of newspaper articles for each department yielded approximately 71% accuracy. This study is meaningful in making academic and practical contributions because it presents a method of extracting the work features for each department, and it is an unsupervised learning-based automatic classification method for automatically classifying news articles relevant to each agency.

A Research on Difference Between Consumer Perception of Slow Fashion and Consumption Behavior of Fast Fashion: Application of Topic Modelling with Big Data

  • YANG, Oh-Suk;WOO, Young-Mok;YANG, Yae-Rim
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.