• Title/Summary/Keyword: new numerical procedure

Search Result 293, Processing Time 0.024 seconds

A Study on the development of Tuna Purse Seiner (참치 선망 어선의 선형개발에 관한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.335-342
    • /
    • 1999
  • The purpose of present research is to develop and efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. Havelock was considered the wave resistance of a post extending vertically downwards through the water from the surface, its section by a horizontal plane being the same at all depths and having its breadth small compared with its length. This enables us to elucidate certain points of interest in ship resistance. However, the ship has not infinite draft. So, the problem which is investigated ind detail in this paper is the wave resistance of a mathematical quadratic model in a uniform stream. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. The numerical results using the panel shift method and finite difference method are compared with the experimental results for wigley mono hull. There are no differences in the wave resistance. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

A HYPOTHESIS TESTING PROCEDURE OF ASSESSMENT FOR THE LIFETIME PERFORMANCE INDEX UNDER A GENERAL CLASS OF INVERSE EXPONENTIATED DISTRIBUTIONS WITH PROGRESSIVE TYPE I INTERVAL CENSORING

  • KAYAL, TANMAY;TRIPATHI, YOGESH MANI;WU, SHU-FEI
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.105-121
    • /
    • 2019
  • One of the main objective of manufacturing industries is to assess the capability performance of different processes. In this paper, we use the lifetime performance index $C_L$ as a criterion to measure larger-the-better type quality characteristic for evaluating the product performance. The lifetimes of products are assumed to follow a general class of inverted exponentiated distributions. We use maximum likelihood estimator to estimate the lifetime performance index under the assumption that data are progressive type I interval censored. We also obtain asymptotic distribution of this estimator. Based on this estimator, a new hypothesis testing procedure is developed with respect to a given lower specification limit. Finally, two numerical examples are discussed in support of the proposed testing procedure.

Fundamental theory of curved structures from a non-tensorial point of view

  • Paavola, Juha;Salonen, Eero-Matti
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.159-180
    • /
    • 1999
  • The present paper shows a new non-tensorial approach to derive basic equations for various structural analyses. It can be used directly in numerical computation procedures. The aim of the paper is, however, to show that the approach serves as an excellent tool for analytical purposes also, working as a link between analytical and numerical techniques. The paper gives a method to derive, at first, expressions for strains in general beam and shell analyses, and secondly, the governing equilibrium equations. The approach is based on the utilization of local fixed Cartesian coordinate systems. Applying these, all the definitions required are the simple basic ones, well-known from the analyses in common global coordinates. In addition, the familiar principle of virtual work has been adopted. The method will be, apparently, most powerful in teaching the theories of curved beam and shell structures for students not familiar with tensor analysis. The final results obtained have no novelty value in themselves, but the procedure developed opens through its systematic and graphic progress a new standpoint to theoretical considerations.

Post-buckling analysis using a load-displacement control (하중과 변위의 동시제어에 의한 좌굴후 현상해석)

  • Kwon, Y.D.;Lim, B.S.;Park, C.;Choi, J.M.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1931-1942
    • /
    • 1997
  • A new load/displacement parameter method is developed for the cases that loads are applied to one or more points, and displacements of a structure are controlled at one or more points sinultaneously. The procedure exploits a generalized Riks method, which utilizes load/displacement parameters as scaling factors in order to analyze the post-buckling phenomena including snap-through or snap-back. A convergence characteristic is improved by employing new relaxation factors in incremental displacement parameter, particularly at the region where exhibits severe numerical instability. The improved performance is illustrated by means of numerical example.

The design of reinforced concrete beams for shear in current practice: A new analytical model

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.225-235
    • /
    • 2009
  • The present paper reviews the shear design (of reinforced concrete beam) provisions of four different national codes and proposes a new but simplified shear strength empirical expression, incorporating variables such as compressive strength of concrete, percentage of longitudinal and vertical steel/s, depth of beam in terms of shear span-to-depth ratio, for reinforced concrete (RC) beams without shear reinforcement. The expression is based on the experimental investigation on RC beams without shear reinforcement. Further, the comparisons of shear design provisions of four National codes viz.: (i) IS 456-2000, (iii) BS 8110-1997, (iv) ACI 318-2002 (v) EuroCode-2-2002 and the proposed expression for the prediction of shear capacity of normal beam/s, have been made by solving a numerical example. The results of the numerical example worked out suggest that there is need for revision in the shear design procedure of different codes. Also, the proposed expression is less conservative among the IS, BS & Eurocode.

Structural matrices of a curved-beam element

  • Gimena, F.N.;Gonzaga, P.;Gimena, L.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.307-323
    • /
    • 2009
  • This article presents the differential system that governs the mechanical behaviour of a curved-beam element, with varying cross-section area, subjected to generalized load. This system is solved by an exact procedure or by the application of a new numerical recurrence scheme relating the internal forces and displacements at the two end-points of an increase in its centroid-line. This solution has a transfer matrix structure. Both the stiffness matrix and the equivalent load vector are obtained arranging the transfer matrix. New structural matrices have been defined, which permit to determine directly the unknown values of internal forces and displacements at the two supported ends of the curved-beam element. Examples are included for verification.

Nonlinear analysis using load-displacement control

  • Kwon, Young-Doo;Kwon, Hyun-Wook;Lim, Beom-Soo
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.153-172
    • /
    • 2005
  • A new load/displacement parameter method is proposed for the simultaneous control of applied loads and structural displacements at one or more points. The procedure is based on a generalized Riks' method, which utilizes load/displacement parameters as scaling factors to analyze post-buckling phenomena including snap-through or snap-back. The convergence characteristics are improved by employing new relaxation factors through an incremental displacement parameter, particularly in a region that exhibits severe numerical instability. The improved performance is illustrated by means of a numerical example.

Direct displacement-based seismic assessment of concrete frames

  • Peng, Chu;Guner, Serhan
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.355-365
    • /
    • 2018
  • Five previously-tested reinforced concrete frames were modelled using a nonlinear finite element analysis procedure to demonstrate the accurate response simulations for seismically-deficient frames through pushover analyses. The load capacities, story drifts, and failure modes were simulated. This procedure accounts for the effects of shear failures and the shear-axial force interaction, and thus is suitable for modeling seismically-deficient frames. It is demonstrated that a comprehensive analysis method with a capability of simulating material constitutive response and significant second-order mechanisms is essential in achieving a satisfactory response simulation. It is further shown that such analysis methods are invaluable in determining the expected seismic response, safety, and failure mode of the frame structures for a performance-based seismic evaluation. In addition, a new computer program was developed to aid researchers and engineers in the direct displacement-based seismic design process by assessing whether a frame structure meets the code-based performance requirements by analyzing the analysis results. As such, the proposed procedure facilitates the performance-based design of new buildings as well as the numerical assessment and retrofit design of existing buildings. A sample frame analysis was presented to demonstrate the application and verification of the approach.

A simple prediction procedure of strain-softening surrounding rock for a circular opening

  • Wang, Feng;Zou, Jin-Feng
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.619-626
    • /
    • 2018
  • A simple prediction procedure was investigated for calculating the stresses and displacements of a circular opening. Unlike existed approaches, the proposed approach starts each step with a radius increment. The stress for each annulus could be obtained analytically, while strain increments for each step can be determinate numerically from the compatility equation by finite difference approximation, flow rule and Hooke's law. In the successive manner, the distributions of stresses and displacements could be found. It should be noted that the finial radial stress and displacement were equal to the internal supporting pressure and deformation at the tunnel wall, respectively. By assuming different plastic radii, GRC and the evolution curve of plastic radii and internal supporting pressures could be obtained conveniently. Then the real plastic radius can be calculated by using linear interpolation in the evolution curve. Some numerical and engineering examples were performed to demonstrate the accuracy and validity for the proposed procedure. The comparisons results show that the proposed procedure was faster than that in Lee and Pietrucszczak (2008). The influence of annulus number and dilation on the accuracy of solutions was also investigated. Results show that the larger the annulus number was, the more accurate the solutions were. Solutions in Park et al. (2008) were significantly influenced by dilation.

A MATRIX PENCIL APPROACH COMPUTING THE ELEMENTARY DIVISORS OF A MATRIX : NUMERICAL ASPECTS AND APPLICATIONS

  • Mitrouli, M.;Kalogeropoulos, G.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.717-734
    • /
    • 1998
  • In the present paper is presented a new matrix pencil-based numerical approach achieving the computation of the elemen-tary divisors of a given matrix $A \in C^{n\timesn}$ This computation is at-tained without performing similarity transformations and the whole procedure is based on the construction of the Piecewise Arithmetic Progression Sequence(PAPS) of the associated pencil $\lambda I_n$ -A of matrix A for all the appropriate values of $\lambda$ belonging to the set of eigenvalues of A. This technique produces a stable and accurate numerical algorithm working satisfactorily for matrices with a well defined eigenstructure. The whole technique can be applied for the computation of the first second and Jordan canonical form of a given matrix $A \in C^{n\timesn}$. The results are accurate for matrices possessing a well defined canonical form. In case of defective matrices indications of the most appropriately computed canonical form. In case of defective matrices indication of the most appropriately computed canonical form are given.