• Title/Summary/Keyword: new numerical procedure

Search Result 293, Processing Time 0.024 seconds

Extended implicit integration process by utilizing nonlinear dynamics in finite element

  • Mohammadzadeh, Saeed;Ghassemieh, Mehdi;Park, Yeonho
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.495-504
    • /
    • 2017
  • This paper proposes a new direct numerical integration algorithm for solving equation of motion in structural dynamics problems with nonlinear stiffness. The new implicit method's degree of accuracy is higher than that of existing methods due to the higher order of the acceleration. Two parameters are defined, leading to a new family of unconditionally stable methods, which helps to take greater time steps in integration and eliminate concerns about the duration of solving. The method developed can be utilized for a number of solid plane finite elements, examples of which are given to compare the proposed method with existing ones. The results indicate the superiority of the proposed method.

A Formulation of NDIF Method to the Algebraic Eigenvalue Problem for Efficiently Extracting Natural Frequencies of Arbitrarily Shaped Plates with the Simply Supported Boundary Condition (단순지지 경계조건을 가진 임의 형상 평판의 효율적인 고유진동수 추출을 위한 NDIF법의 대수 고유치 문제로의 정식화)

  • Kang, S.W.;Kim, J.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.607-613
    • /
    • 2009
  • A new formulation of NDIF method to the algebraic eigenvalue problem is introduced to efficiently extract natural frequencies of arbitrarily shaped plates with the simply supported boundary condition. NDIF method, which was developed by the authors for the free vibration analysis of arbitrarily shaped membranes and plates, has the feature that it yields highly accurate natural frequencies compared with other analytical methods or numerical methods(FEM and BEM). However, NDIF method has the weak point that it needs the inefficient procedure of searching natural frequencies by plotting the values of the determinant of a system matrix in the frequency range of interest. A new formulation of NDIF method developed in the paper doesn't require the above inefficient procedure and natural frequencies can be efficiently obtained by solving the typical algebraic eigenvalue problem. Finally, the validity of the proposed method is shown in several case studies, which indicate that natural frequencies by the proposed method are very accurate compared to other exact, analytical, or numerical methods.

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(II)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법(II)-캐비터 충전 문제와 슬로싱 문제에의 응용-)

  • Kim, Min-Su;Park, Jong-Seon;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1570-1579
    • /
    • 2000
  • Finite element analysis of fluid flow with moving free surface has been carried out in two and tree dimensions. The new VOF-based numerical algorithm that has been proposed by the present authors was applied to several 2-D and 3-D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools that have been newly introduced by the present authots; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2-D and 3-D cavity filling and sloshing problems, which demonstrated versatility and effectiveness of the new free surface tracking scheme as well as the overall solution procedure. The proposed numerical algorithm resolved successfully the interacting free surface with each other. The simulated results demonstrated the applicability of proposed numerical algorithm to the practical problems of large free surface motion. Also, it has been demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non-uniform grid systems and can be extended to the 3-D free surface flow problem without additional efforts.

Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique (최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

HYDROPLANING ANALYSIS BY FEM AND FVM - EFFECT OF TIRE ROLLING AND TIRE PATTERN ON HYDROPLANING

  • Nakajima, Y.;Seta, E.;Kamegawa, T.;Ogawa, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 2000
  • The new numerical procedure for hydroplaning has been developed by considering the following three important factors; fluid/structure interaction, tire rolling, and practical tread pattern. The tire was analyzed by FEM with Lagrangian formulation and the fluid is analyzed by FVM with Eulerian formulation. Since the tire and the fluid are modeled separately and their coupling is automatically computed by the coupling element, the fluid/structure interaction of the complex geometry such as the tire with the tread pattern can be analyzed practically. We verified the predictability of the hydroplaning simulation in the different parameters such as the water flow, the velocity dependence of hydroplaning, and the effect of the tread pattern on hydroplaning. In order to predict the streamline in the contact patch, the procedure of the global-local analysis was developed. Since the streamline could be predicted by this technology, we could develop the new pattern in a short period based on the principle; "make the stream line smooth".

  • PDF

Parallel damage detection through finite frequency changes on multicore processors

  • Messina, Arcangelo;Cafaro, Massimo
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.457-469
    • /
    • 2017
  • This manuscript deals with a novel approach aimed at identifying multiple damaged sites in structural components through finite frequency changes. Natural frequencies, meant as a privileged set of modal data, are adopted along with a numerical model of the system. The adoption of finite changes efficiently allows challenging characteristic problems encountered in damage detection techniques such as unexpected comparison of possible shifted modes and the significance of modal data changes very often affected by experimental/environmental noise. The new procedure extends MDLAC and exploits parallel computing on modern multicore processors. Smart filters, aimed at reducing the potential damaged sites, are implemented in order to reduce the computational effort. Several use cases are presented in order to illustrate the potentiality of the new damage detection procedure.

Research for 2MW Wind Turbine Tower Shell Design Optimization (2MW급 풍력발전기 타워 쉘 최적 설계)

  • Hong, Hyeok-Soo;Park, Jin-Il;Bang, Jo-Hyug;Ryu, Ji-Yune;Kim, Doo-Hoon
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.19-26
    • /
    • 2006
  • Tower shell design is very important because tower takes about 20% of overall wind turbine cost. This paper contains procedure of tower analysis and tower shell thickness optimization concept. Some of requirements like eigenfrequency and buckling evaluated by numerical method. But strength and fatigue can be derived by mathematical method simply. Using this procedure, tower shell thickness can be designed without repetition of complicated calculation.

  • PDF

Numerical dissipation for explicit, unconditionally stable time integration methods

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.159-178
    • /
    • 2014
  • Although the family methods with unconditional stability and numerical dissipation have been developed for structural dynamics they all are implicit methods and thus an iterative procedure is generally involved for each time step. In this work, a new family method is proposed. It involves no nonlinear iterations in addition to unconditional stability and favorable numerical dissipation, which can be continuously controlled. In particular, it can have a zero damping ratio. The most important improvement of this family method is that it involves no nonlinear iterations for each time step and thus it can save many computationally efforts when compared to the currently available dissipative implicit integration methods.

A Study on Nonlinear Water-Wave Profile (비선형 해양파의 파형 연구에 관하여)

  • JANG TAEK-SOO;WANG SUNG-HYUNH;KWON SUN-HONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.179-182
    • /
    • 2004
  • This paper deals with a new mathematical formulation of nonlinear wave profile based on Banach fixed point theorem. As application of the formulation and its solution procedure, some numerical solutions was presented in this paper and nonlinear equation was derived. Also we introduce a new operator for iteration and getting solution. A numerical study was accomplished with Stokes' first-order solution and iteration scheme, and then we can know the nonlinear characteristic of Stokes' high-order solution. That is, using only Stokes' first-oder(linear) velocity potential and an initial guess of wave profile, it is possible to realize the corresponding high-oder Stokian wave profile with tile new numerical scheme which is the method of iteration. We proved the mathematical convergence of tile proposed scheme. The nonlinear strategy of iterations has very fast convergence rate, that is, only about 6-10 iterations arc required to obtain a numerically converged solution.

  • PDF

Development of an Inversion Analysis Technique for Downhole Testing and Continuous Seismic CPT

  • Joh, Sung-Ho;Mok, Young-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.95-108
    • /
    • 1998
  • Downhole testing and seismic CPT (SCPT) have been widely used to evaluate stiffness profiles of the subgrade. Advantages of downhole testing and SCPT such as low cost, easy operation and a simple seismic source have got these testings more frequently adopted in site investigation. For the automated analysis of downhole testing and SCPT, the concept of interval measurements has been practiced. In this paper. a new inversion procedure to deal tilth the interval measurements for the automated downhole testing and SCPT (including a newlydeveloped continuous SCPT) is proposed. The forward modeling in the new inversion procedure incorporates ray path theory based on Snell's law. The formulation for the inversion analysis is derived from the maximum likelihood approach, which estimates the maximum likelihood of obtaining a particular travel time from a source to a receiver. Verification of the new inversion procedure was performed with numerical simulations of SCPT using synthesized profiles. The results of the inversion analyses performed for the synthetic data show that the new inversion analysis is a valid procedure which enhances Va profiles determined by downhole testing and SCPT.

  • PDF