• Title/Summary/Keyword: new material model

Search Result 1,065, Processing Time 0.039 seconds

[Retracted]Structural performance of RC beams with openings reinforced with composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.475-493
    • /
    • 2022
  • The results of research focusing on the experimental and numerical performance of ferrocement RC beams with openings reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh, and polyethylene mesh independently are presented in this article. Casting and testing of fourteen reinforced concrete beams with dimensions of 200×100×2000 mm under concentric compression loadings were part of the research program. The type of reinforcing materials, the volume fraction of reinforcement, the number of mesh layers, and the number of stirrups are the major parameters that change. The main goal is to understand the impact of using new appealing materials in reinforcing RC beams with openings. Using ANSYS-16.0 Software, nonlinear finite element analysis (NLFEA) was used to demonstrate the behavior of composite RC beams with openings. A parametric study is also conducted to discuss the variables that can have the greatest impact on the mechanical behavior of the proposed model, such as the number of openings. The obtained experimental and numerical results demonstrated the FE simulations' acceptable accuracy in estimating experimental values. Furthermore, demonstrating that the strength gained of specimens reinforced with fiber glass meshes was reduced by approximately 38% when compared to specimens reinforced with expanded or welded steel meshes is significant. In addition, when compared to welded steel meshes, using expanded steel meshes in reinforcing RC beams with openings results in a 16 percent increase in strength. In general, when ferrocement beams with openings are tested under concentric loadings, they show higher-level ultimate loads and energy-absorbing capacity than traditional RC beams.

[Retracted]Structural behavior of RC channel slabs strengthened with ferrocement

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.793-815
    • /
    • 2023
  • The current study looks at the experimental and numerical performance of ferrocement RC channel slabs reinforced with welded steel mesh, expanded steel mesh, and fiber glass mesh individually. Ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were subjected to flexural loadings as part of the testing program. The type of reinforcing materials, the number of mesh layers, and the reinforcement volume fraction are the key parameters that can be changed. The main goal is to determine the impact of using new inventive materials to reinforce composite RC channel slabs. Using ANSYS -16.0 Software, nonlinear finite element analysis (NLFEA) was used to simulate the behavior of composite channel slabs. Parametric study is also demonstrated to identify variables that can have a significant impact on the model's mechanical behavior, such as changes in slab dimensions. The obtained experimental and numerical results indicated that FE simulations had acceptable accuracy in estimating experimental values. Also, it's significant to demonstrate that specimens reinforced with fiber glass meshes gained approximately 12% less strength than specimens reinforced with expanded or welded steel meshes. In addition, Welded steel meshes provide 24% increase in strength over expanded steel meshes when reinforcing RC channel slabs. In general, ferrocement specimens tested under flexural loadings outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorbing capacity.

An experimental and numerical study on the local buckling of cold-formed steel castellated I-Beam stiffened with oval castellation

  • S. Prabhakaran;R. Malathy;M. Kasiviswanathan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.143-157
    • /
    • 2024
  • Cold-formed steel (CFS) I sections are increasingly being used as load-bearing components in building constructions, and such I sections frequently incorporate web holes to facilitate service installation. The economical and structural advantages of these elements have prompted many researchers to investigate the behavior of such structures. Despite numerous studies on the buckling stability of castellated beams, there is a notable absence of experimental investigation into oval castellated beams with stiffeners. This study examines the local buckling of cold-formed steel castellated I-beams stiffened with oval constellations through experimental and numerical analysis. Four specimens are fabricated with and without stiffeners, including parallel, perpendicular, and intersecting types attached to the web portion of the beam, along with cross stiffeners for the oval-shaped openings at the beam ends. Additionally, a numerical model is developed to predict the behavior of castellated beams with oval openings up to failure, considering both material and geometric nonlinearities. Codal analysis is performed using the North American specification for cold-formed steel AISI S-100 and the Australian/New Zealand design code AS/NZS 4600. The anticipated outcomes from numerical analysis, experimental research, and codal analysis are compared and presented. It will be more helpful to the preliminary designers.

A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations

  • Mofareh Hassan Ghazwani;Ali Alnujaie;Pham Van Vinh;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.313-324
    • /
    • 2024
  • The main aims of this study are to develop a new nonlocal quasi-3D theory for the free vibration behaviors of the functionally graded sandwich nanobeams. The sandwich beams consist of a ceramic core and two functionally graded material layers resting on elastic foundations. The two layers, linear spring stiffness and shear layer, are used to model the effects of the elastic foundations. The size-effect is considered using nonlocal elasticity theory. The governing equations of the motion of the functionally graded sandwich nanobeams are obtained via Hamilton's principle in combination with nonlocal elasticity theory. Then the Navier's solution technique is used to solve the governing equations of the motion to achieve the nonlocal free vibration behaviors of the nanobeams. A deep parametric study is also provided to demonstrate the effects of some parameters, such as length-to-height ratio, power-law index, nonlocal parameter, and two parameters of the elastic foundation, on the free vibration behaviors of the functionally graded sandwich nanobeams.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

A Study of Semantic Web Based Open Digital Library Model (시멘틱 웹 기반 개방형 전자도서관 모델에 관한 연구)

  • 황상규
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.1
    • /
    • pp.187-207
    • /
    • 2004
  • Recently there has been a growing interest in the investigation and development of the next generation web - the Semantic Web. From the perspective of a information science, the next generation web - Semantic Web is a metadata initiative. It is reason that one of important stage of Semantic Web Construction is adding formal metadata that describes a Web resource's content and so people can find easy material using metadata. In this paper, 1 designed new application profile metadata architecture as a way to serve as interoperability between various open digital libraries using different information architecture in Semantic Web environment. Based on new application profile metadata architecture, 1 developed union metadata automatic generation and union search algorithm to integrate heterogeneous huge-scale metadata in the open digital library.

An Improved Genetic Approach to Optimal Supplier Selection and Order Allocation with Customer Flexibility for Multi-Product Manufacturing

  • Mak, Kai-Ling;Cui, Lixin;Su, Wei
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2012
  • As the global market becomes more competitive, manufacturing industries face relentless pressure caused by a growing tendency of greater varieties of products, shorter manufacturing cycles and more sophisticated customer requirements. Efficient and effective supplier selection and order allocation decisions are, therefore, important decisions for a manufacturer to ensure stable material flows in a highly competitive supply chain, in particular, when customers are willing to accept products with less desirable product attributes (e.g., color, delivery date) for economic reasons. This paper attempts to solve optimally the challenging problem of supplier selection and order allocation, taking into consideration the customer flexibility for a manufacturer producing multi-products to satisfy the customers' demands in a multi period planning horizon. A new mixed integer programming model is developed to describe the behavior of the supply chain. The objective is to maximize the manufacturer's total profit subject to various operating constraints of the supply chain. Due to the complexity and non-deterministic polynomial-time (NP)-hard nature of the problem, an improved genetic approach is proposed to solve the problem optimally. This approach differs from a canonical genetic algorithm in three aspects: a new selection method to reduce the chance of premature convergence and two problem-specific repair heuristics to guarantee feasibility of the solutions. The results of applying the proposed approach to solve a set of randomly generated test problems clearly demonstrate its excellent performance. When compared with applying the canonical genetic algorithm to locate optimal solutions, the average improvement in the solution quality amounts to as high as ten percent.

Web-based Data Integration System Implementation for Reliability Improvement of a Product (제품의 신뢰성 향상를 위한 웹 기반 데이터 통합 시스템 구축에 관한 연구)

  • Kyung, Tae-Won;Kim, Sang-Kuk
    • Information Systems Review
    • /
    • v.7 no.2
    • /
    • pp.117-128
    • /
    • 2005
  • This study proposes an integrated monitoring system for data reliability improvement in a steel manufacturing industry. The data obtained from existing steel manufacturing process is not micro data which is gathered at the occurring point, but average value (macro data) which is gathered from the occurring point to ending point. This kind of macro data is not only difficult for a detailed analysis for an error causing factor, but it might cause a fatal influence as well on the quality of produced goods even if the error is within an error tolerance. And during the process of steel production, thousands of data is produced in a second, thus requiring database plan to manage abundant amount of data. Therefore, the following proposed system is capable of collecting as well as analyzing all the data generated from the process of product production. And the system was able to raise the efficiency of the database server by planning the database to handle large capacity data. Also, by applying web-based technology, inquiries and analysis of data with no limit on time and space was possible with PC connected to the intranet. Hence, the system was able to work on effective quality improvement of manufactured products, plus able to raise the reliability of the product. Also, accumulated data from long period of time was used for fundamental material for new controlling model, operation technology, and new product development.

Modeling of Various Tool Influence Functions in Computer Controlled Optical Surfacing (컴퓨터 제어를 통한 광학 가공에서의 다양한 툴 영향 함수의 모델링)

  • Kim, Gi-Chul;Ghim, Young-Sik;Rhee, Hyug-Gyo;Kim, Hak-Sung;Yang, Ho-Soon;Lee, Yun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.167-172
    • /
    • 2016
  • The computer controlled optical surfacing (CCOS) technique provides superior fabrication performance for optical mirrors when compared to the conventional method, which relies heavily on the skill of the optician. The CCOS technique provides improvements in terms of mass production, low cost, and short polishing time, and are achieved by estimating and controlling the moving speed of the tool and toolpath through a numerical analysis of the tool influence function (TIF). Hence, the exact estimation of various TIFs is critical for high convergence rates and high form accuracy in the CCOS process. In this paper, we suggest a new model for TIFs, which can be applied for various tool shapes, different velocity distributions, and non-uniform tool pressure distributions. Our proposed TIFs were also verified by comparisons with experimental results. We anticipate that these new TIFs will have a major role in improving the form accuracy and shortening the polishing time by increasing the accuracy of the material removal rate.

3D Printed Building Technology using Recycling Materials (리사이클링 원료를 사용한 건축용 3D 프린팅 기술 동향)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.3-13
    • /
    • 2018
  • 3D printing, also known as Additive Manufacturing (AM), is being positioned as a new business model of revolutionizing paradigms of existing industries. Launched in early 2000, 3D printing technology for architecture has also advanced rapidly in association with machinery and electronics technologies mostly in the United States and Europe. However, 3D printing systems for architecture require different mechanical characteristics from those of cement/concrete raw materials used in existing construction methods. Accordingly, in order to increase utilization of raw materials produced in the cement and resource recycling industry, it is necessary to develop materials processing and utilization technology, to secure new property evaluation and testing methods, and to secure database related to environmental stability for a long period which aims to reflect characteristics of an architectural 3D printing technology.