• Title/Summary/Keyword: new material model

Search Result 1,065, Processing Time 0.028 seconds

A new dead-time determination method for gamma-ray detectors using attenuation law

  • Akyurek, T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4093-4097
    • /
    • 2021
  • This study presents a new dead-time measurement method using the gamma attenuation law and generalized dead-time models for nuclear gamma-ray detectors. The dead-time of the NaI(Tl) detection system was obtained to validate the new dead-time determination method using very thin lead and polyethylene absorbers. Non-paralyzing dead-time was found to be 8.39 ㎲, and paralyzing dead-time was found to be 8.35 ㎲ using lead absorber for NaI(Tl) scintillator detection system. These dead-time values are consistent with the previously reported dead-time values for scintillator detection systems. The gamma build-up factor's contribution to the dead-time was neglected because a very thin material was used.

New reliability framework for assessment of existing concrete bridge structures

  • Mahdi Ben Ftima;Bruno Massicotte;David Conciatori
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.399-409
    • /
    • 2024
  • Assessment of existing concrete bridges is a challenge for owners. It has greater economic impact when compared to designing new bridges. When using conventional linear analyses, judgment of the engineer is required to understand the behavior of redundant structures after the first element in the structural system reaches its ultimate capacity. The alternative is to use a predictive tool such as advanced nonlinear finite element analyses (ANFEA) to assess the overall structural behavior. This paper proposes a new reliability framework for the assessment of existing bridge structures using ANFEA. A general framework defined in previous works, accounting for material uncertainties and concrete model performance, is adapted to the context of the assessment of existing bridges. A "shifted" reliability problem is defined under the assumption of quasi-deterministic dead load effects. The overall exercise is viewed as a progressive pushover analysis up to structural failure, where the actual safety index is compared at each event to a target reliability index.

Case Study of New Employee Mentoring Program at Hospital A (의료기관 신입직원 멘토링프로그램 사례연구: A병원을 중심으로)

  • Jiyoung Han;Jongil Choi
    • Korea Journal of Hospital Management
    • /
    • v.29 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Purposes: The purpose of this study is to analyze cases of development and operation of a mentoring program that provides psychological support to new employees and helps them adapt to work, thereby applying it to actual work and laying the foundation for follow-up research. Methodology: We explored the development and application process of A Hospital mentoring program by applying the mentoring program model developed according to the procedures of the ADDIE model, and confirmed the perceptions of participants who participated in the training course through analysis of activity logs and in-depth interviews. Findings: The main results of the case analysis are as follows. First, the curriculum was developed according to the stages of analysis, design, development, implementation, and evaluation. As a result of activity log and in-depth interview analysis, participants recognized that the mentoring program was helpful in forming social relationships, organizational adaptation, and preventing job turnover, and recognized difficulties in communication. Participants mentioned supplementing the operating system. Practical Implication: The results of a systematic review of the application and effectiveness of mentoring programs for new employees can serve as reference material for practical program design.

  • PDF

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials

  • Fernanda Ferrari Esteves Torres;Jader Camilo Pinto;Gabriella Oliveira Figueira;Juliane Maria Guerreiro-Tanomaru;Mario Tanomaru-Filho
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.2.1-2.8
    • /
    • 2021
  • Objectives: New premixed bioceramic root repair materials require moisture for setting. Using micro-computed tomography (micro-CT), this study evaluated the filling ability and volumetric changes of calcium silicate-based repair materials (mineral trioxide aggregate repair high-plasticity [MTA HP] and Bio-C Repair, Angelus), in comparison with a zinc oxide and eugenol-based material (intermediate restorative material [IRM]; Dentsply DeTrey). Materials and Methods: Gypsum models with cavities 3 mm deep and 1 mm in diameter were manufactured and scanned using micro-CT (SkyScan 1272. Bruker). The cavities were filled with the cements and scanned again to evaluate their filling capacity. Another scan was performed after immersing the samples in distilled water for 7 days to assess the volumetric changes of the cements. The statistical significance of differences in the data was evaluated using analysis of variance and the Tukey test with a 5% significance level. Results: Bio-C Repair had a greater filling ability than MTA HP (p < 0.05). IRM was similar to Bio-C and MTA HP (p > 0.05). MTA HP presented the largest volumetric change (p < 0.05), showing more volume loss than Bio-C and IRM, which were similar (p > 0.05). Conclusions: Bio-C Repair is a new endodontic material with excellent filling capacity and low volumetric change. The gypsum model proposed for evaluating filling ability and volumetric changes by micro-CT had appropriate and reproducible results. This model may enhance the physicochemical evaluation of premixed bioceramic materials, which need moisture for setting.

RC deep beams with unconventional geometries: Experimental and numerical analyses

  • Vieira, Agno Alves;Melo, Guilherme Sales S.A.;Miranda, Antonio C.O.
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.351-365
    • /
    • 2020
  • This work presents numerical and experimental analyses of the behavior of reinforced-concrete deep beams with unconventional geometries. The main goal here is to experimentally and numerically study these geometries to find possible new behaviors due to the material nonlinearity of reinforced concrete with complex geometries. Usually, unconventional geometries result from innovative designs; in general, studies of reinforced concrete structures are performed only on conventional members such as beams, columns, and labs. To achieve the goal, four reinforced-concrete deep beams with geometries not addressed in the literature were tested. The models were numerically analyzed with the Adaptive Micro Truss Model (AMTM), which is the proposed method, to address new geometries. This work also studied the main parameters of the constitutive model of concrete based on a statistical analysis of the finite element (FE) results. To estimate the ultimate loads, FE simulations were performed using the Monte Carlo method. Based on the obtained ultimate loads, a probabilistic distribution was created, and the final ultimate loads were computed.

Mathematical Model and Numerical Analysis for Packed Bed Methanation Reactors (충전층 메탄화 반응기의 수학적 모델 및 전산 수치해석)

  • CHI, JUNHWA
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.260-270
    • /
    • 2015
  • One-dimensional packed bed reactor model accounting for interfacial and intra-particle gradients was developed and based on it numerical analyses were performed to investigate the dynamic behavior of a commercial scale methanation reactor. Methanation reaction was almost complete near the reactor inlet and gases with equilibrated composition were discharged from the reactor. Both the intra-particle temperature gradient and differential surface temperature rise were found to be severe near the reactor inlet. To reduce the possible degradation or fracture of catalyst particles and prevent local overheating on the catalyst, addition of inert material can be an effective way.

Development and Assessment of Rural Ecological Backhouse (농촌형 생태 뒷간의 개발과 사용성)

  • Rhee, Shin-Ho;Yoon, Seong-Soo;Eom, Seong-Jun;Park, Jin-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.71-81
    • /
    • 2008
  • This research was focused on the new model and its utility value of environmental friendly backhouse that overcomes the weaknesses of traditional backhouse and modem backhouse. To develop the model, the characteristics, merits and demerits of backhouses and the effectives of additional materials were analyzed and the study result of Rhee etc.(2005) is based. The design drawing of an ecological backhouse was presented considering the sanitation, environment, economy, and utility among the merits of existing backhouses and it's product showed. The new designed model is considered to conveniences in modern toilet and staff is used instead to water as it is suitable for additional material of night-soil. This product was established at farm house and it's utility was proved. And a farmer easily are able to make this backhouse according it's design drawing.

Modeling of Metal Penetration Rate by a High Power Continuous Wave Laser (고출력 연속발진 레이저에 의한 금속 관통율 모델링)

  • Shin, Wan-Soon;Koh, Hae-Seog;Park, Byung-Suh;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.705-711
    • /
    • 2012
  • The purpose of this study is to develop the model to estimate the penetration rate of metal under a high power continuous wave laser irradiation. To estimate it, an empirical modeling is more practical when the penetration phenomena of metal by laser irradiation is too complex to be analyzed by the numerical simulation. When several methods published earlier were applied to our results, we found out that their methods were not appropriate as the model. Therefore, we suggested the new empirical method considering effective intensity as a key variable. As a result, we confirmed that the new method was effective to model the penetration rate of SUS304 metal and expected that it could be available to other metals.

A New Model for Predicting Width Spread in a Roughing Mill - Part I: Application to Dog-bone Shaped Inlet Cross (조압연 공정의 판 폭 퍼짐 예측 모델 - Part I : 도그 본 형상에 적용)

  • Lee, D.H.;Lee, K.B.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • In the current study, we present a new model for predicting width spread of a slab with a dog-bone shaped cross section during rolling in the roughing train of a hot strip mill. The approach is based on the extremum principle for a rigid plastic material and a three dimensional admissible velocity field. The upper bound theorem is used for calculating the width spread of the slab. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) process simulations.