• Title/Summary/Keyword: new displacement field

Search Result 235, Processing Time 0.02 seconds

Low-Soil Disturbance In-Situ Test Method Development and Its Application : Screw Plate Loading Test (지반의 교란을 최소화 한 원위치시험법 개발 및 적용 : 스크류재하시험)

  • Lee, Yong-Su;Hwang, Woong-Ki;Choi, Yong-Kyu;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.977-986
    • /
    • 2009
  • Sampling disturbance can introduce considerable errors in the laboratory estimation of geotechnical properties of soils, and the results obtained from sophisticated sampling and careful laboratory testing are not matching with field behavior. Therefore, it is advantage to adopt in-situ testing techniques for the estimation of geotechnical parameters. Therefore, Screw plate loading test, one of new field test technologies, has been investigated in this study. This test can be utilized to find out important properties of soils such as load-displacement, elastic modulus, and shear strength. The screw plate loading test modified from the plate loading test is an experiment underneath ground by inserting a spiral type of auger screw. The structure and characteristics of the screw plate loading test device was examined in detail. In addition, The new screw plate loading test device was manufactured to refer the previous studies. The reliability of developing screw plate loading test was examined through the analysis of the laboratory test.

  • PDF

Stochastic analysis for uncertain deformation of foundations in permafrost regions

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Zhao, Xiaodong;Yin, Leijian
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.589-600
    • /
    • 2018
  • For foundations in permafrost regions, the displacement characteristics are uncertain because of the randomness of temperature characteristics and mechanical parameters, which make the structural system have an unexpected deviation and unpredictability. It will affect the safety of design and construction. In this paper, we consider the randomness of temperature characteristics and mechanical parameters. A stochastic analysis model for the uncertain displacement characteristic of foundations is presented, and the stochastic coupling program is compiled by Matrix Laboratory (MATLAB) software. The stochastic displacement fields of an embankment in a permafrost region are obtained and analyzed by Neumann stochastic finite element method (NSFEM). The results provide a new way to predict the deformation characteristics of foundations in permafrost regions, and it shows that the stochastic temperature has a different influence on the stochastic lateral displacement and vertical displacement. Construction disturbance and climate warming lead to three different stages for the mean settlement of characteristic points. For the stochastic settlement characteristic, the standard deviation increases with time, which imply that the results of conventional deterministic analysis may be far from the true value. These results can improve our understanding of the stochastic deformation fields of embankments and provide a theoretical basis for engineering reliability analysis and design in permafrost regions.

Effect of thermal annealing on low-energy C-ion irradiated MgB2 thin films

  • Jung, Soon-Gil;Son, Seung-Ku;Pham, Duong;Lim, W.C.;Song, J.;Kang, W.N.;Park, T.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.13-17
    • /
    • 2019
  • We investigate the effect of thermal annealing on $MgB_2$ thin films with thicknesses of 400 and 800 nm, irradiated by 350 keV C-ions with a dose of $1{\times}10^{15}atoms/cm^2$. Irradiation by low-energy C-ions produces atomic lattice displacement in $MgB_2$ thin films, improving magnetic field performance of critical current density ($J_c$) while reducing the superconducting transition temperature ($T_c$). Interestingly, the lattice displacement and the $T_c$ are gradually restored to the original values with increasing thermal annealing temperature. In addition, the magnetic field dependence of $J_c$ also returns to that of the pristine state together with the restoration of $T_c$. Because $J_c$(H) is sensitive to the type and density of the disorder, i.e. vortex pinning, the recovery of $J_c$(H) in irradiated $MgB_2$ thin films by thermal annealing indicates that low-energy C-ion irradiation on $MgB_2$ thin films primarily causes lattice displacement. These results provide new insights into the application of low-energy irradiation in strategically engineering critical properties of superconductors.

A new nonlocal HSDT for analysis of stability of single layer graphene sheet

  • Bouadi, Abed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2018
  • A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates undetermined integral terms and contains only two variables. The length scale parameter is considered in the present formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, thickness of the graphene sheets and shear deformation on the critical buckling force have been examined.

A new plate model for vibration response of advanced composite plates in thermal environment

  • Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.369-383
    • /
    • 2018
  • In this work, a novel hyperbolic shear deformation theory is developed for free vibration analysis of the simply supported functionally graded plates in thermal environment and the FGM having temperature dependent material properties. This theory has only four unknowns, which is even less than the other shear deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical model are performed to demonstrate the efficacy of the model.

Bending analysis of advanced composite plates using a new quasi 3D plate theory

  • Houari, Tarek;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • In this paper, a refined higher-order shear deformation theory including the stretching effect is developed for the analysis of bending analysis of the simply supported functionally graded (FG) sandwich plates resting on elastic foundation. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir;Abdelmadjid, Cheikh
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.369-380
    • /
    • 2018
  • In this research work, nonlinear thermal buckling behavior of functionally graded (FG) plates is explored based a new higher-order shear deformation theory (HSDT). The present model has just four unknowns, by using a new supposition of the displacement field which enforces undetermined integral variables. A shear correction factor is, thus, not necessary. A power law distribution is employed to express the disparity of volume fraction of material distributions. Three kinds of thermal loading, namely, uniform, linear, and nonlinear and temperature rises over z-axis direction are examined. The non-linear governing equations are resolved for plates subjected to simply supported boundary conditions at the edges. The results are approved with those existing in the literature. Impacts of various parameters such as aspect and thickness ratios, gradient index, type of thermal load rising, on the non-dimensional thermal buckling load are all examined.

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.