• 제목/요약/키워드: neuronal protection

검색결과 97건 처리시간 0.035초

속명탕(續命湯)이 C6 glial cell 보호 및 허혈성 뇌손상에 미치는 영향 (Effects of Sokmyeung-tang(SMT) on the Protection of C6 Glial Cells and Ischemic Brain Damage)

  • 안가영;최은희;김인수;강성순;이영수;홍석;전상윤
    • 대한한방내과학회지
    • /
    • 제32권1호
    • /
    • pp.43-55
    • /
    • 2011
  • Objectives : Sokmyeung-tang(SMT) has been used for treatment of CVA in traditional oriental medicine, so this study was designed to evaluate the effect of SMT's protection on brain cell damage against the oxidative stress that was affected by CVA, We also investigated the effect of motor function improvement and neurotrophic factor in ischemic cerebral damaged rats. Methods : We measured cell viability after administrating SMT, chemicals(Paraquat, SNP, rotenone, and $H_2O_2$) which cause oxidative stress, and both SMT and chemicals. We carried out neurobehavioral evaluation(Rotarod test, Beam-walking test, postural reflex test) and observed BDNF (brain-derived neurotrophic factor) expression by injecting SMT into ischemic cerebral damaged rat. Results : Through this study, we observed the following three results. First, brain cell death caused by paraquat, rotenone, and $H_2O_2$ significantly decreased with the treatment of SMT. Second, neuronal movement function in ischemic cerebral damaged rats was significantly improved by the treatment of SMT. Third, BDNF in ischemic cerebral damaged rats increased with the treatment of SMT. Conclusions : SMT protects brain cells from damage induced by oxidative stress (Paraquat, rotenone, $H_2O_2$). SMT also improves neuronal movement function and increases BDNF in ischemic cerebral damaged rats.

Protective Effect of Acanthopanax senticosus on Oxidative Stress Induced PC12 Cell Death

  • Choi, Soo-Jung;Yoon, Kyung-Young;Choi, Sung-Gil;Kim, Dae-Ok;Oh, Se-Jong;Jun, Woo-Jin;Shin, Dong-Hoon;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.1035-1040
    • /
    • 2007
  • Epidemiologic studies have shown important relationships between oxidative stress and Alzheimer's disease (AD) brain. In this study, free radical scavenging activity and neuronal cell protection effect of aqueous methanol extracts of Acanthopanax senticosus (A. senticosus) were examined. $H_2O_2$-induced oxidative stress was measured using 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. Pretreatment with the phenolics of A. senticosus prevented oxidative injury against $H_2O_2$ toxicity. Since oxidative stress is known to increase neuronal cell membrane breakdown, leading to cell death, lactic dehydrogenase release, and trypan blue exclusion assays were utilized. We found that phenolics of A. senticosus have neuronal cell protection effects. It suggests that the phenolics of A. senticosus inhibited $H_2O_2$-induced oxidative stress and A. senticosus may be beneficial against the oxidative stress-induced risk in AD.

Neurotrophic Actions of Ginsenoside Rbi, Peptide Growth Factors and Cytokines

  • Masahiro Sakanaka;Wen, Tong-Chun;Kohji Sato;Zhang, Bo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.21-30
    • /
    • 1998
  • Ginseng root has been considered to prevent neuronal degeneration associated with brain ischemia, but experimental proof in support of this speculation is limited. Moreover, few studies have compared the neuroprotective actions of ginseng ingredients with those of peptide growth factors and cytokines isf vivo. Using a gerbil forebrain ischemia model, we demonstrated that the oral administration of red ginseng powder before an ischemic insult prevents delayed neuronal death in the hippocampal CAI field and that a neuroprotective molecule within red ginseng powder is ginsenoside Rbl. The neurotrophic effect of ginsenoside Rbl, when examined in the gerbil ischemia model and in neuronal cultures was as potent as or more potent than the effects of epidermal growth factor, ciliary neurotrophic factor, erythropoietin, prosaposin, interleukin-6 and interleukin-3. Besides the protection of hippocampal CAI neurons against brain ischemia/repercussion injuries, ginsenoside Rbl was shown to prevent place navigation disability, cortical infarction and secondary thalamic degeneration in stroke-prone spontaneous hypertensive rats with permanent occlusion of the unilateral middle cerebral artery distal to the striate branches. These findings may validate the empirical use of ginseng root for the treatment of cerebrovascular diseases

  • PDF

Synthesis of ($\pm$)-Methyl-(1-aryl-4-pyridin-3-yl-but-3-enyl)-amines

  • Jang, Jin-Hee;Sin, Kwan-Seog;Park, Hae-Il
    • Archives of Pharmacal Research
    • /
    • 제24권6호
    • /
    • pp.503-507
    • /
    • 2001
  • trans-Metanicotine, a subtype (${\alpha}_4{\beta}_2$)-selective ligand for neuronal nicotinic acetylcholine receptor, is under clinical phase for Alzheimer's disease. An efficient synthetic route for ($\pm$)-methyl-(1-aryl-4-pyridin-3-yl-but-3-enyl)-am ices, derivatives of tracts-metanicotine, was explored. Allylation reaction of aryl aldimines with allylmagnesium bromide in THF gave ($\pm$)-methyl-(1-aryl-but-3-enyl)-amines. Protection of the amines with the Boc group and following Heck reaction of the N-Boc amines with 3-bromopyridine gave ($\pm$)-methyl-(1-aryl-4-pyridin-3-yl-but-3-enyl)-carbamic acid tert-butyl esters. Deprotection of the N-Boc group in aqueous 1 N-HCI solution gave the titled amines in good yields. Thus, trans-metanicotine analogues modified at the ${\alpha}-position$ of the methylamino group with amyl groups were obtained in 5 steps.

  • PDF

Antioxidative Role of Selenoprotein W in Oxidant-Induced Mouse Embryonic Neuronal Cell Death

  • Chung, Youn Wook;Jeong, Daewon;Noh, Ok Jeong;Park, Yong Hwan;Kang, Soo Im;Lee, Min Goo;Lee, Tae-Hoon;Yim, Moon Bin;Kim, Ick Young
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.609-613
    • /
    • 2009
  • It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats, and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1 and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced by treatment of $H_2O_2$ than control cells. TUNEL assays revealed that $H_2O_2$-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal development.

Protection of spontaneous and glutamate-induced neuronal damages by Soeumin Sibjeundaibo-tang and Soyangin Sibimijihwang-tang in cultured mice cerebrocortical cells

  • Lee, Mi-Young;Ma, Jin-Yeul;Choo, Young-Kug;Jung, Kyu-Yong
    • Advances in Traditional Medicine
    • /
    • 제1권1호
    • /
    • pp.55-63
    • /
    • 2000
  • Soeumin Sibjeundaibo-tang (SJDBT) and Soyangin Sibimijihwang-tang (SMJHT) have been used traditionally to improve the systemic blood circulation and biological energy production in the patients with circulatory and neuronal diseases. The object of this study is to determine the protective effects of SJDBT and SMJHT extracts on the spontaneous and glutamate-induced neuronal damages in cultured cells derived from mice cerebral cortex. At 14 days after beginning the cultures, the activity of lactate dehydrogenase released into the culture media was significantly decreased by treatment of cerebroneuronal cells with SJDBT and SMJHT (0.1 mg/ml) for 7 days. By comparison with the normal cells, cerebroneuronal morphology was dramatically changed by treatment of glutamate (1 mM) for 12 hrs, and this was conspicuously recovered by pretreatment of cerebroneural cells with SJDBT and SMJHT (0.1-1.0 mg/ml) for 2 days. Moreover, glutamated-induced DNA fragmentation was also protected by pretreatment of cerebroneuronal cells with those extracts. These results suggest that naturally occurring and glutamate-induced degeneration of cultured cerebrocortical cells may be related, in part, to the process of apoptotic cell death. The pharmacological properties of SJDBT and SMJHT extracts to improve cerebroneuronal degeneration may be considered as one of useful medicines that can prevent cerebrocortical impairments resulted from age-dependent and excitotoxicity-induced neuronal degeneration in human brain.

  • PDF

양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향 (Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture)

  • 이환성;박성준;정광식;손영주;정혁상;박동일;손낙원
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

시판 메밀차 열수 추출물의 항산화 및 신경세포 보호효과 (Neuronal Cell Protection and Antioxidant Activities of Hot Water Extract from Commercial Buckwheat Tea)

  • 정창호;정희록;최성길;심기환;허호진
    • 한국식품저장유통학회지
    • /
    • 제18권3호
    • /
    • pp.358-365
    • /
    • 2011
  • 본 연구에서는 시판 메밀차 열수 추출물의 항산화 효과 및 신경세포 보호효과를 조사하였다. 시판 메밀차 열수 추출물의 ABTS 라디칼 소거 활성, FRAP 및 MDA 생성 저해 실험결과 농도 의존적인 경향이 나타났으며 또한 높은 항산화 활성을 보여주었다. 과산화수소로 유발된 산화적 손상에 의한 ROS 축적량을 조사한 결과 $H_2O_2$ 단독 처리구보다 메밀차 열수 추출물 처리구에서 낮은 ROS 축적량을 나타내었다. MTT 및 LDH 분석을 통한 PC12 세포 중의 신경세포 보호효과를 측정한 결과 MTT 분석에서는 시판 메밀차 열수 추출물의 모든 농도에서 높은 세포 생존율을 나타냈고, LDH 분석에서는 추출물에 의한 농도 의존적인 세포질 효소 (LDH) 방출량 감소가 관찰되었다. 총 페놀성 화합물, rutin 및 quercitrin의 함량은 각각 9,608.10 mg/g, 13.42 및 0.90 mg/100 g이었다. 본 연구결과를 종합해 볼 때 rutin 및 quercitrin과 같은 다양한 페놀성 화합물을 함유한 시판 메밀차 추출물은 항산화 활성과 산화적 스트레스로 유발된 신경세포 보호효과를 나타내어 퇴행성 신경질환 등을 예방 할 수 있는 기능성 식품 소재로서의 활용 가치가 높을 것으로 판단된다.