DOI QR코드

DOI QR Code

Antioxidative Role of Selenoprotein W in Oxidant-Induced Mouse Embryonic Neuronal Cell Death

  • Chung, Youn Wook (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University) ;
  • Jeong, Daewon (Department of Microbiology and Aging-associated Disease Research Center, Yeungnam University College of Medicine) ;
  • Noh, Ok Jeong (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University) ;
  • Park, Yong Hwan (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University) ;
  • Kang, Soo Im (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Min Goo (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Tae-Hoon (School of Dentistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for the Dental School, Chonnam National University) ;
  • Yim, Moon Bin (Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health) ;
  • Kim, Ick Young (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
  • Received : 2009.02.23
  • Accepted : 2009.03.06
  • Published : 2009.05.31

Abstract

It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats, and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1 and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced by treatment of $H_2O_2$ than control cells. TUNEL assays revealed that $H_2O_2$-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal development.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Aachmann, F.L., Fomenko, D.E., Soragni, A., Gladyshev, V.N., and Dikiy, A. (2007). Structural analysis of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J. Biol. Chem. 282, 37036-37044 https://doi.org/10.1074/jbc.M705410200
  2. Allan, C.B., Lacourciere, G.M., and Stadtman, T.C. (1999). Responsiveness of selenoproteins to dietary selenium. Annu. Rev. Nutr. 19, 1-16 https://doi.org/10.1146/annurev.nutr.19.1.1
  3. Beilstein, M.A., Vendeland, S.C., Barofsky, E., Jensen, O.N., and Whanger, P.D. (1996). Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J. Inorg. Biochem. 61, 117-124 https://doi.org/10.1016/0162-0134(95)00045-3
  4. Berry, M.J., Banu, L., Chen, Y.Y., Mandel, S.J., Kieffer, J.D., Harney, J.W., and Larsen, P.R. (1991). Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353, 273-276 https://doi.org/10.1038/353273a0
  5. Brigelius-Flohe, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 27, 951-965 https://doi.org/10.1016/S0891-5849(99)00173-2
  6. Burk, R.F., and Hill, K.E. (2005). Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25, 215-235 https://doi.org/10.1146/annurev.nutr.24.012003.132120
  7. Cohen, G. (1994). Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann. N Y Acad. Sci. 738, 8-14
  8. Cone, J.E., Del Rio, R.M., Davis, J.N., and Stadtman, T.C. (1976). Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73, 2659-2663 https://doi.org/10.1073/pnas.73.8.2659
  9. Dikiy, A., Novoselov, S.V., Fomenko, D.E., Sengupta, A., Carlson, B.A., Cerny, R.L., Ginalski, K., Grishin, N.V., Hatfield, D.L., and Gladyshev, V.N. (2007). SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46, 6871-6882 https://doi.org/10.1021/bi602462q
  10. Fagegaltier, D., Hubert, N., Yamada, K., Mizutani, T., Carbon, P., and Krol, A. (2000). Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 19, 4796-4805 https://doi.org/10.1093/emboj/19.17.4796
  11. Ferreiro, A., Quijano-Roy, S., Pichereau, C., Moghadaszadeh, B., Goemans, N., Bonnemann, C., Jungbluth, H., Straub, V., Villa nova, M., Leroy, J.P., et al. (2002). Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am. J. Hum. Genet. 71, 739-749 https://doi.org/10.1086/342719
  12. Flohe, L., Gunzler, W.A., and Schock, H.H. (1973). Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32, 132-134 https://doi.org/10.1016/0014-5793(73)80755-0
  13. Grumolato, L., Ghzili, H., Montero-Hadjadje, M., Gasman, S., Lesage, J., Tanguy, Y., Galas, L., Ait-Ali, D., Leprince, J., Guerineau, N.C., et al. (2008). Selenoprotein T is a PACAP-regulated gene involved in intracellular $Ca^{2+}$ mobilization and neuroendocrine secretion. FASEB J. 22, 1756-1768 https://doi.org/10.1096/fj.06-075820
  14. Gu, Q.P., Beilstein, M.A., Barofsky, E., Ream, W., and Whanger, P.D. (1999). Purification, characterization, and glutathione binding to selenoprotein W from monkey muscle. Arch. Biochem. Biophys. 361, 25-33 https://doi.org/10.1006/abbi.1998.0949
  15. Gu, Q.P., Sun, Y., Ream, L.W., and Whanger, P.D. (2000). Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol. Cell. Biochem. 204, 49-56 https://doi.org/10.1023/A:1007065829068
  16. Hill, K.E., McCollum, G.W., Boeglin, M.E., and Burk, R.F. (1997). Thioredoxin reductase activity is decreased by selenium deficiency. Biochem. Biophys. Res. Commun. 234, 293-295 https://doi.org/10.1006/bbrc.1997.6618
  17. Hubert, N., Walczak, R., Carbon, P., and Krol, A. (1996). A protein binds the selenocysteine insertion element in the 3′-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Res. 24, 464-469 https://doi.org/10.1093/nar/24.3.464
  18. Jeong, D., Kim, T.S., Chung, Y.W., Lee, B.J., and Kim, I.Y. (2002). Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett. 517, 225-228 https://doi.org/10.1016/S0014-5793(02)02628-5
  19. Jeong, D.W., Kim, E.H., Kim, T.S., Chung, Y.W., Kim, H., and Kim, I.Y. (2004). Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis. Mol. Cells 17, 156-159
  20. Kim, H.Y., and Gladyshev, V.N. (2007). Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329 https://doi.org/10.1042/BJ20070929
  21. Korotkov, K.V., Novoselov, S.V., Hatfield, D.L., and Gladyshev, V.N. (2002). Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol. 22, 1402-1411 https://doi.org/10.1128/MCB.22.5.1402-1411.2002
  22. Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigo, R., and Gladyshev, V.N. (2003). Characterization of mammalian selenoproteomes. Science 300, 1439-1443 https://doi.org/10.1126/science.1083516
  23. Kumaraswamy, E., Korotkov, K.V., Diamond, A.M., Gladyshev, V.N., and Hatfield, D.L. (2002). Genetic and functional analysis of mammalian Sep15 selenoprotein. Methods Enzymol. 347, 187-197 https://doi.org/10.1016/S0076-6879(02)47017-6
  24. Lee, B.J., Worland, P.J., Davis, J.N., Stadtman, T.C., and Hatfield, D.L. (1989). Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264, 9724-9727
  25. Loflin, J., Lopez, N., Whanger, P.D., and Kioussi, C. (2006). Selenoprotein W during development and oxidative stress. J. Inorg. Biochem. 100, 1679-1684 https://doi.org/10.1016/j.jinorgbio.2006.05.018
  26. Lovell, M.A., Xie, C., Gabbita, S.P., and Markesbery, W.R. (2000). Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic. Biol. Med. 28, 418-427 https://doi.org/10.1016/S0891-5849(99)00258-0
  27. Moghadaszadeh, B., Petit, N., Jaillard, C., Brockington, M., Roy, S.Q., Merlini, L., Romero, N., Estournet, B., Desguerre, I., Chaigne, D.I et al. (2001). Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat. Genet. 29, 17-18 https://doi.org/10.1038/ng713
  28. Moon, I.S., Cho, S.J., Lee, H., Seog, D.H., Jung, Y.W., Jin, I., and Walikonis, R. (2008). Upregulation by KCl treatment of eukaryotic translation elongation factor 1A (eEF1A) mRNA in the dendrites of cultured rat hippocampal neurons. Mol. Cells 25, 538-544
  29. Mustacich, D., and Powis, G. (2000). Thioredoxin reductase. Biochem. J. 346 Pt 1, 1-8 https://doi.org/10.1042/bj3460001
  30. Niethammer, M., Smith, D.S., Ayala, R., Peng, J., Ko, J., Lee, M.S., Morabito, M., and Tsai, L.H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697-711 https://doi.org/10.1016/S0896-6273(00)00147-1
  31. Novoselov, S.V., Kryukov, G.V., Xu, X.M., Carlson, B.A., Hatfield, D.L., and Gladyshev, V.N. (2007). Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 282, 11960-11968 https://doi.org/10.1074/jbc.M701605200
  32. Pellmar, T.C. (1987). Peroxide alters neuronal excitability in the CA1 region of guinea-pig hippocampus in vitro. Neuroscience 23, 447-456 https://doi.org/10.1016/0306-4522(87)90068-6
  33. Petit, N., Lescure, A., Rederstorff, M., Krol, A., Moghadaszadeh, B., Wewer, U.M., and Guicheney, P. (2003). Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet. 12, 1045-1053 https://doi.org/10.1093/hmg/ddg115
  34. Rice, M.E. (2000). Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23, 209-216 https://doi.org/10.1016/S0166-2236(99)01543-X
  35. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-590 https://doi.org/10.1126/science.179.4073.588
  36. Schweizer, U., Brauer, A.U., Kohrle, J., Nitsch, R., and Savaskan, N.E. (2004). Selenium and brain function: a poorly recognized liaison. Brain Res. Brain Res. Rev. 45, 164-178 https://doi.org/10.1016/j.brainresrev.2004.03.004
  37. Trepanier, G., Furling, D., Puymirat, J., and Mirault, M.E. (1996). Immunocytochemical localization of seleno-glutathione peroxidase in the adult mouse brain. Neuroscience 75, 231-243 https://doi.org/10.1016/0306-4522(96)00222-9
  38. Tujebajeva, R.M., Copeland, P.R., Xu, X.M., Carlson, B.A., Harney, J.W., Driscoll, D.M., Hatfield, D.L., and Berry, M.J. (2000). Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 1, 158-163 https://doi.org/10.1093/embo-reports/kvd033
  39. Vendeland, S.C., Beilstein, M.A., Chen, C.L., Jensen, O.N., Barofsky, E., and Whanger, P.D. (1993). Purification and properties of selenoprotein W from rat muscle. J. Biol. Chem. 268, 17103-17107
  40. Yeh, J.Y., Beilstein, M.A., Andrews, J.S., and Whanger, P.D. (1995). Tissue distribution and influence of selenium status on levels of selenoprotein W. FASEB J. 9, 392-396 https://doi.org/10.1096/fasebj.9.5.7896009
  41. Yeh, J.Y., Gu, Q.P., Beilstein, M.A., Forsberg, N.E., and Whanger, P.D. (1997a). Selenium influences tissue levels of selenoprotein W in sheep. J. Nutr. 127, 394-402 https://doi.org/10.1093/jn/127.3.394
  42. Yeh, J.Y., Vendeland, S.C., Gu, Q., Butler, J.A., Ou, B.R., and Whanger, P.D. (1997b). Dietary selenium increases selenoprotein W levels in rat tissues. J. Nutr. 127, 2165-2172 https://doi.org/10.1093/jn/127.11.2165
  43. Zinoni, F., Birkmann, A., Stadtman, T.C., and Bock, A. (1986). Nucleotide sequence and expression of the selenocysteinecontaining polypeptide of formate dehydrogenase (formatehydrogen- lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 4650-4654 https://doi.org/10.1073/pnas.83.13.4650

Cited by

  1. Transcriptional Regulation of Selenoprotein W by MyoD during Early Skeletal Muscle Differentiation vol.285, pp.52, 2009, https://doi.org/10.1074/jbc.m110.152934
  2. Effects of Dietary Selenium on Selenoprotein W Gene Expression in the Chicken Immune Organs vol.144, pp.1, 2011, https://doi.org/10.1007/s12011-011-9062-5
  3. The PACAP-Regulated Gene Selenoprotein T Is Highly Induced in Nervous, Endocrine, and Metabolic Tissues during Ontogenetic and Regenerative Processes vol.152, pp.11, 2009, https://doi.org/10.1210/en.2011-1246
  4. Characterization and expression of chicken selenoprotein W vol.24, pp.2, 2009, https://doi.org/10.1007/s10534-010-9401-6
  5. Effects of Chicken Selenoprotein W on H2O2-Induced Apoptosis in CHO-K1 Cells vol.147, pp.1, 2009, https://doi.org/10.1007/s12011-011-9311-7
  6. The Expression of Chicken Selenoprotein W, Selenocysteine-synthase (SecS), and Selenophosphate Synthetase-1 (SPS-1) in CHO-K1 Cells vol.148, pp.1, 2012, https://doi.org/10.1007/s12011-012-9346-4
  7. Effects of Selenoprotein W gene expression by selenium involves regulation of mRNA stability in chicken embryos neurons vol.25, pp.2, 2009, https://doi.org/10.1007/s10534-012-9517-y
  8. Antioxidative role of selenoprotein W in oxidant-induced chicken splenic lymphocyte death vol.27, pp.2, 2009, https://doi.org/10.1007/s10534-014-9708-9
  9. SelW regulates inflammation-related cytokines in response to H2O2in Se-deficient chicken liver vol.5, pp.47, 2015, https://doi.org/10.1039/c4ra16055j
  10. Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Tox ukn and STOP-Tox ukk tes vol.91, pp.2, 2009, https://doi.org/10.1007/s00204-016-1741-8
  11. Gene Silencing of Selenoprotein K Induces Inflammatory Response and Activates Heat Shock Proteins Expression in Chicken Myoblasts vol.180, pp.1, 2009, https://doi.org/10.1007/s12011-017-0979-1
  12. SelW protects against H2O2-induced liver injury in chickens via inhibiting inflammation and apoptosis vol.7, pp.25, 2009, https://doi.org/10.1039/c6ra27911b
  13. Selenoprotein W as a molecular target of D-amino acid oxidase is regulated by D-amino acid in chicken neurons vol.10, pp.5, 2009, https://doi.org/10.1039/c8mt00042e
  14. Selenoprotein W deficiency does not affect oxidative stress and insulin sensitivity in the skeletal muscle of high-fat diet-fed obese mice vol.317, pp.6, 2009, https://doi.org/10.1152/ajpcell.00064.2019
  15. Selenium and Neurological Diseases: Focus on Peripheral Pain and TRP Channels vol.18, pp.6, 2009, https://doi.org/10.2174/1570159x18666200106152631