• Title/Summary/Keyword: neuronal differentiation activity

Search Result 29, Processing Time 0.03 seconds

Cholinesterase Activity in the Dental Epithelium of Hamsters During Tooth Development

  • Yang, Jin-Young;Kim, Tak-Heun;Lee, Ju-Yeon;Jiang, Eun-Ha;Bae, Young;Cho, Eui-Sic
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.169-175
    • /
    • 2010
  • Cholinesterase (ChE) is one of the most ubiquitous enzymes and in addition to its well characterized catalytic function, the morphogenetic involvement of ChE has also been demonstrated in neuronal tissues and in non-neuronal tissues such as bone and cartilage. We have previously reported that during mouse tooth development, acetylcholinesterase (AChE) activity is dynamically localized in the dental epithelium and its derivatives whereas butyrylcholinesterase (BuChE) activity is localized in the dental follicles. To test the functional conservation of ChE in tooth morphogenesis among different species, we performed cholinesterase histochemistry following the use of specific inhibitors of developing molar and incisors in the hamster from embryonic day 11 (E11) to postnatal day 1 (P1). In the developing molar in hamster, the localization of ChE activity was found to be very similar to that of the mouse. At the bud stage, no ChE activity was found in the tooth buds, but was first detectable in the dental epithelium and dental follicles at the cap and bell stages. AChE activity was found to be principally localized in the dental epithelium whereas BuChE activity was observed in the dental follicle. In contrast to the ChE activity in the molars, BuChE activity was specifically observed in the secretory ameloblasts of the incisors, whilst no AChE activity was found in the dental epithelium of incisors. The subtype and localization of ChE activity in the dental epithelium of the incisor thus differed from those of the molar in hamster. In addition, these patterns also differed from the ChE activity in the mouse incisor. These results strongly suggest that ChE may play roles in the differentiation of the dental epithelium and dental follicle in hamster, and that morphogenetic subtypes of ChE may be variable among species and tooth types.

Modulation of Rit Activation by the Alpha Subunit of Go

  • Yang, Chul-Min;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.327-333
    • /
    • 2009
  • Heterotrimeric GTP binding proteins, G-proteins, mediate signal transduction generated by neurotransmitters and hormones. Among G-proteins, Go proteins are the most abundant in brain and classified as a member of Gi family. Ras-like protein in all tissues (Rit), one of the small GTPases, is a member of a Ras superfamily and identified as an important regulator of neuronal differentiation and cell transformation. Recently, we have reported that Rit functioned as a candidate downstream effector for alpha subunit of Go proteins ($Go{\alpha}$) and regulated neurite outgrowth triggered by $Go{\alpha}$ activation. In this study, we showed that the GTPase domain of $Go{\alpha}$ contributed to the direct interaction with Rit. We also demonstrated that $Go{\alpha}$ could lead to an increase of Rit activity suggesting that Rit play a role as a downstream effector of $Go{\alpha}$.

  • PDF

Regulation of Nicotinic Acetylcholine Receptor by Tyrosine Kinase in Autonomic Major Pelvic Ganglion Neurons

  • Kim, Dae-Ran;Ahn, Sung-Wan;Park, Kyu-Sang;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • It is widely known that protein tyrosine kinases (PTKs) are involved in controlling many biological processes such as cell growth, differentiation, proliferation, survival and apoptosis. An $\alpha3\beta4$ subunit combination acts as a major functional acetylcholine receptor (nAChRs) in male rat major pelvic ganglion (MPG) neurons, and their activation induces fast inward currents and intracellular calcium increases. Recently it has been reported that the activity of acetylcholine receptors (AChRs) in some neurons can be negatively regulated by PTKs. However, the exact mechanism of regulation of nAChRs by PTKs is poorly understood. Therefore, we examined the potential role particular in nAChR by PTK using electrophysiology and calcium imaging in male rat MPG neurons. ACh induced inward currents and $(Ca^{2+})_i$ increases in MPG neurons, concomitantly. These responses were inhibited by more than 90% in $Na^+$- or $Ca^{2+}$- free solution. $\alpha$-conotoxin AuIB, a selective $\alpha3\beta4$ nAChR blocket, inhibited ACh-induced inward currents. Genistein (10 $\mu$M), a broad-spectrum tyrosine kinase inhibitor, markedly decreased ACh-induced currents and $Ca^{2+}$ transients, whereas 10 $\mu$M genistin, an inactive analogue, had little effect. Overall these data suggest that the activities of $\alpha3\beta4$ AChRs in MPG neurons are positively regulated by PTK. In conclusion, trosine kinase may be one of the key factors in the regulation of $\alpha3\beta4$ nAChRs in rat MPG neurons, which may play an important roles in the autonomic neuronal function such as synaptic transmission, autonomic reflex, and neuronal plasticity.

  • PDF

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

Minoxidil Regulates Aging-Like Phenotypes in Rat Cortical Astrocytes In Vitro

  • Minji Bang;Seung Jin Yang;TaeJin Ahn;Seol-Heui Han;Chan Young Shin;Kyoung Ja Kwon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.116-126
    • /
    • 2023
  • Mainly due to the slanted focus on the mechanism and regulation of neuronal aging, research on astrocyte aging and its modulation during brain aging is scarce. In this study, we established aged astrocyte culture model by long-term culturing. Cellular senescence was confirmed through SA-β-gal staining as well as through the examination of morphological, molecular, and functional markers. RNA sequencing and functional analysis of astrocytes were performed to further investigate the detailed characteristics of the aged astrocyte model. Along with aged phenotypes, decreased astrocytic proliferation, migration, mitochondrial energetic function and support for neuronal survival and differentiation has been observed in aged astrocytes. In addition, increased expression of cytokines and chemokine-related factors including plasminogen activator inhibitor -1 (PAI-1) was observed in aged astrocytes. Using the RNA sequencing results, we searched potential drugs that can normalize the dysregulated gene expression pattern observed in long-term cultured aged astrocytes. Among several candidates, minoxidil, a pyrimidine-derived anti-hypertensive and anti-pattern hair loss drug, normalized the increased number of SA-β-gal positive cells and nuclear size in aged astrocytes. In addition, minoxidil restored up-regulated activity of PAI-1 and increased mitochondrial superoxide production in aged astrocytes. We concluded that long term culture of astrocytes can be used as a reliable model for the study of astrocyte senescence and minoxidil can be a plausible candidate for the regulation of brain aging.

Comparative Analysis of the Developmental Competence of Three Human Embryonic Stem Cell Lines in Vitro

  • Kim, Sung-Eun;Kim, Byung-Kak;Gil, Jung-Eun;Kim, Suel-Kee;Kim, Jong-Hoon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.49-56
    • /
    • 2007
  • One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.

Crystal Structure of an Activity-enhancing Mutant of DUSP19 (효소활성 증가 돌연변이를 함유한 DUSP19의 결정구조)

  • Ju, Da Gyung;Jeon, Tae Jin;Ryu, Seong Eon
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1140-1146
    • /
    • 2018
  • Dual-specificity phosphatases (DUSPs) play a role in cell growth and differentiation by modulating mitogen-activated protein kinases. DUSPs are considered targets for drugs against cancers, diabetes, immune diseases, and neuronal diseases. Part of the DUSP family, DUSP19 modulates c-Jun N-terminal kinase activity and is involved in osteoarthritis pathogenesis. Here, we report screening of cavity-creating mutants and the crystal structure of a cavity-creating L75A mutant of DUSP19 which has significantly enhanced enzyme activity in comparison to the wild-type protein. The crystal structure reveals a well-formed cavity due to the absent Leu75 side chain and a rotation of the active site-bound sulfate ion. Despite the cavity creation, residues surrounding the cavity did not rearrange significantly. Instead, a tightened hydrophobic interaction by a remote tryptophan residue was observed, indicating that the protein folding of the L75A mutant is stabilized by global folding energy minimization, not by local rearrangements in the cavity region. Conformation of the rotated active site sulfate ion resembles that of the phosphor-tyrosine substrate, indicating that cavity creation induces an optimal active site conformation. The activity enhancement by an internal cavity and its structural information provide insight on allosteric modulation of DUSP19 activity and development of therapeutics.

Enhanced Expression of Phospholipase C-$\gamma$1 in Regenerating Murine Neuronal Cells by Pulsing Electromagnetic Field (흰쥐에서 편측 반회후두신경 재지배 후 Phopholipase C-$\gamma$1(PLC-$\gamma$1)의 발현과 후두기능회복과의 관계)

  • 정성민;신혜정;김성숙;김문정;윤선옥;박수경;신유리;김진경
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.12 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • Background and Objectives : Signal traduction through phospholipase C(PLC) participate in the regulation of cell growth and differentiation. Growth factors bind to their receptors and thereby induce tyrosine phophorylation of the phospholipase C-${\gamma}$1(PLC-${\gamma}$1). PLC-${\gamma}$1 is a substrate for several receptor tyrosine kinases and its catalytic activity is increased by tyrosine phosphorylation. Tyrosine kinase phosphorylation of PLC-${\gamma}$1 stimulates PLC activation and cell proliferation. However the signal transduction pathway and the significance of PLC in injured recurrent laryngeal nerve regeneration is unknown. Therefore after we obtained fuctionally recovered rats using PEMF in this study, we attempt to provide some evidence that PLC plays a role in nerve regeneration itself and regeneration related to PEMF through the analysis of the difference between fucntional recovery group and non-recovery group in the recurrent laryngeal nerve. Materials and Method : Using 32 healthy male Sprague-Dawley rats, transections and primary anastomosis were performed on their left recurrent laryngeal nerves. Rats were then randomly assigned to 2 groups. The experimental group(n=16) received PEMS by placing them in custom cages equipped with Helm-holz coils(3hr/day, 5days/wk, for 12wk). The control group(n=16) were handled the same way as the experimental group, except that they did not receive PEMS. Laryngo-videoendoscopy was performed before and after surgery and followed up weekly. Laryngeal EMG was obtained in both PCA and TA muscles. Immunohistochemisty staining and Western blotting analysis using monoclonal antibody was performed to detect PLC-${\gamma}$1 in recurrent laryngeal nerve and nodose ganglion. Results : 10 rats(71%) in experimental group and 4 rats(38%) in the control group showed recovery of vocal fold motion. Functionally-recoverd rats show PLC-${\gamma}$1 positive cells in neuron and ganglion cells after 12 weeks from nerve injury. Conclusion : This study shows that PLC1-${\gamma}$ involved in singnal trasduction pathway in functinal recovery of injured recurrent laryngeal nerve and PEMF enhance the functional recovery by effect on this molecule.

  • PDF