• 제목/요약/키워드: neuro-fuzzy model

Search Result 218, Processing Time 0.027 seconds

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

Design of Emotion Recognition Using Speech Signals (음성신호를 이용한 감정인식 모델설계)

  • 김이곤;김서영;하종필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.265-270
    • /
    • 2001
  • Voice is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena(the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF

Chaos Simulator as a Developing Tool for Application of Chaos Engineering

  • Kuwata, Kaihei;Kajitani, Yuji;Katayama, Ryu;Nishida, Yukiteru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.853-856
    • /
    • 1993
  • In this paper, we describe a chaos simulator as a developing tool for applications of chaos engineering. This simulator is composed of three modules, such as generation module of chaotic signals by deterministic rules, determination module whether observed time series is chaos or not, and nonlinear system identification module by self generating Neuro Fuzzy Model.

  • PDF

Neuro-Fuzzy model ins using the Hierarchical Clustering (계층적 클러스터링을 이용한 뉴로-퍼지 모델링)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.279-282
    • /
    • 2002
  • 본 논문에서는 뉴로-퍼지 모델에서 입력 공간의 효율적인 분할을 위하여 계층적 클러스터링방법을 이용하고 있다. 기존의 HCM, FCM 등에서 초기치를 임의로 선택함으로써 데이터의 클러스터를 생성하였으나 제안된 방법은 계층적인 클러스터링을 이용하여 각 데이터간의 정보를 이용하여 클러스터링을 좀더 일반화하였다. 임의로 주어진 초기치에 의하여 클러스터의 형태가 바뀔 수 있는 문제점을 각각의 데이터 정보를 이용함으로써 이러한 문제를 해결하고자 하였다. 이를 자동차 연료 예측 문제에 적용하여 제안된 방법의 유용성을 보이고자 한다.

Computation of Optimal Path for Pedestrian Reflected on Mode Choice of Public Transportation in Transfer Station (대중교통 수단선택과 연계한 복합환승센터 내 보행자 최적경로 산정)

  • Yoon, Sang-Won;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.45-56
    • /
    • 2007
  • As function and scale of the transit center get larger, the efficient guidance system in the transit center is essential for transit users in order to find their efficient routes. Although there are several studies concerning optimal path for the road, but insufficient studies are executed about optimal path inside the building. Thus, this study is to develop the algorithm about optimal path for car owner from the basement parking lot to user's destination in the transfer station. Based on Dijkstra algorithm which calculate horizontal distance, several factors such as fatigue, freshness, preference, and required time in using moving devices are objectively computed through rank-sum and arithmetic-sum method. Moreover, optimal public transportation is provided for transferrer in the transfer station by Neuro-Fuzzy model which is reflected on people's tendency about public transportation mode choice. Lastly, some scenarios demonstrate the efficiency of optimal path algorithm for pedestrian in this study. As a result of verification the case through the model developed in this study is 75 % more effective in the scenario reflected on different vertical distance, and $24.5\;{\sim}\;107.7\;%$ more effective in the scenario considering different horizontal distance, respectively.

  • PDF

Development of Sludge Concentration Estimation Method using Neuro-Fuzzy Algorithm (뉴로-퍼지 알고리즘을 이용한 슬러지 농도 추정 기법 개발)

  • Jang, Sang-Bok;Lee, Ho-Hyun;Lee, Dae-Jong;Kweon, Jin-Hee;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • A concentration meter is widely used at purification plants, sewage treatment plants and waste water treatment plants to sort and transfer high concentration sludge and to control the amount of chemical dosage. When the strange substance is contained in the sludge, however, the attenuation of ultrasonic wave could be increased or not be transmitted to the receiver. At that case, the value of concentration meter is higher than the actual density value or vibrated up and down. It has also been difficult to automate the residuals treatment process according to the problems as sludge attachment or damage of a sensor. Multi-beam ultrasonic concentration meter has been developed to solve these problems, but the failure of the ultrasonic beam of a specific concentration measurement value degrade the performance of the entire system. This paper proposes the method to improve the accuracy of sludge concentration rate by choosing reliable sensor values and learning them by proposed algorithm. The prediction algorithm is chosen as neuro-fuzzy model, which is tested by the various experiments.

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

Design of Model to Recognize Emotional States in a Speech

  • Kim Yi-Gon;Bae Young-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • Verbal communication is the most commonly used mean of communication. A spoken word carries a lot of informations about speakers and their emotional states. In this paper we designed a model to recognize emotional states in a speech, a first phase of two phases in developing a toy machine that recognizes emotional states in a speech. We conducted an experiment to extract and analyse the emotional state of a speaker in relation with speech. To analyse the signal output we referred to three characteristics of sound as vector inputs and they are the followings: frequency, intensity, and period of tones. Also we made use of eight basic emotional parameters: surprise, anger, sadness, expectancy, acceptance, joy, hate, and fear which were portrayed by five selected students. In order to facilitate the differentiation of each spectrum features, we used the wavelet transform analysis. We applied ANFIS (Adaptive Neuro Fuzzy Inference System) in designing an emotion recognition model from a speech. In our findings, inference error was about 10%. The result of our experiment reveals that about 85% of the model applied is effective and reliable.