• 제목/요약/키워드: neuro-fuzzy inference system

검색결과 208건 처리시간 0.025초

페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발 (Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system)

  • 김성호;이성룡;강정규
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

뉴로-퍼지 제어기를 이용한 유압서보시스템의 추적제어 (A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.509-517
    • /
    • 2001
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require and accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is evaluated through a series of experiments for the various types of inputs while applying disturbances to the hydraulic system. The performance of this controller was compared with those of PID and PD controllers. From these results, We observe be said that the position tracking performance of neuro-fuzzy is better those of PID and PD controllers.

  • PDF

뉴로-퍼지 제어기를 이용한 유압서보시스뎀의 추적제어 (A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.228-228
    • /
    • 2000
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require an accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller Parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is obtained through a series of experiments for the various types of input while applying disturbances to the cylinder. .and performance of this controller was compared with that of PID, PD controller. As a experimental result, it can be proven that the position tracking performance of the neuro-fuzzy is better than that of PID and PD controller.

  • PDF

Identification of Nonlinear Dynamic Systems via the Neuro-Fuzzy Computing and Genetic Algorithms

  • Lee, Seon-Gu;Kim, Dong-Won;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1892-1896
    • /
    • 2005
  • In this paper, an effective method for selecting significant input variables in building ANFIS (Adaptive Neuro-Fuzzy Inference System) for nonlinear system modeling is proposed. Dominant inputs in a nonlinear system identification process are extracted by evaluating the performance index and they are applied to ANFIS. The availability of our proposed model is verified with the Box and Jenkins gas furnace data. The comparisons with other methods are also given in this paper to show our proposed method is superior to other models.

  • PDF

심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구 (Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV))

  • 박성수;이건창
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.239-247
    • /
    • 2019
  • 감정을 정확히 예측하는 것은 환자중심의 의료디바이스 개발 및 감성관련 산업에서 매우 중요한 이슈이다. 감정예측에 관한 많은 연구 중 감정 예측에 심박 변동성과 뉴로-퍼지 접근법을 적용한 연구는 없다. 본 연구는 HRV를 이용한 ANFEP(Adaptive Neuro Fuzzy system for Emotion Prediction)을 제안한다. ANFEP의 핵심 기능은 인공 신경망과 퍼지시스템을 통합해 예측 모델을 학습하는 ANFIS(Adaptive Neuro-Fuzzy Inference System)에 기반한다. 제안 모형의 검증을 위해 50명의 실험자를 대상으로 청각자극으로 감정을 유발하고, 심박변이도를 구하여 ANFEP 모형에 입력하였다. STDRR과 RMSSD를 입력으로 하고 입력변수 당 2개의 소속함수로 하는 ANFEP모형이 가장 좋은 결과를 나타났다. 제안한 감정예측 모형을 선형회귀 분석, 서포트 벡터 회귀, 인공신경망, 랜덤 포레스트와 비교한 결과 본 제안모형이 가장 우수한 성능을 보였다. 연구 결과는 보다 적은 입력으로 신뢰성 높은 감정인식이 가능함을 입증했고, 이를 활용해 보다 정확하고 신뢰성 높은 감정인식 시스템 개발에 대한 연구가 필요하다.

적응 뉴로퍼지 추론시스템을 이용한 가공 송전선의 열화등급 진단 (Diagnosis of Deterioration Grades for Overhead Transmission Lines using Adaptive Neuro-Fuzzy Inference System)

  • 김성덕;이상래
    • 조명전기설비학회논문지
    • /
    • 제17권4호
    • /
    • pp.57-63
    • /
    • 2003
  • 가공 송전선로의 아연도금 강심 알루미늄연선 도체들은 장기간 동안 대기오염에 의해 서서히 열화되었기 때문에, 2천년 대에 이르러 수많은 도체들이 예상된 유효수명을 초과하였다. 대부분의 도체들은 경제적인 운용 측면에서 현재 상태들을 평가하지 않으면 안되므로, 이 논문에서는 경년, 환경지표, 및 도체구조와 같은 중요 파라미터들을 사용하여 노화도체의 현재 상태를 평가하기 위한 방법을 제안하였다. 노화도체의 수명에 대응하는 열화등급을 예측하기 위한 진단 방법을 기술하였으며, 이 시스템은 전문가 지식과 경험을 토대로 적응 뉴로퍼지 추론시스템 (Adaptive Neuro-Fuzzy Inference System)으로 설계하였다. 이 진단시스템을 국내의 송전선로에 적용하여, 이 시스템이 노화 ACSR 도체를 비파괴적으로 진단하고 경제적으로 운용하기 위한 방안으로서 효과적으로 사용될 수 있음을 밝혔다.

뉴로퍼지추론을 이용한 재질온도응답 분류시스템의 개발 (Development of Classification System for Material Temperature Responses Using Neuro-Fuzzy Inference)

  • 유영재
    • 센서학회지
    • /
    • 제9권6호
    • /
    • pp.440-447
    • /
    • 2000
  • 본 논문에서는 곡선근사법과 뉴로퍼지 시스템의 열전도도 추론을 이용하여 대기온도의 변화에 관계없이 재질의 온도응답을 분류하기 위한 시스템을 제안한다. 재질의 온도응답은 정상상태에 도달하는데 장시간이 소요되며, 과도상태에서는 잡음을 포함하고 있기 때문에 실용화하는데 문제점이 있다. 제안하는 방법은 온도응답곡선의 과도상태만을 곡선근사법에 의해 지수함수화함으로써 단시간에 계측이 가능하고 측정중의 잡음을 없앨 수 있다. 뉴로퍼지 추론을 이용하여 임의의 대기온도 하에서 재질의 열전도도를 추론함으로써 열전도 특성의 복잡한 성질을 수학적으로 해석해야하는 문제점을 극복하였다. 이를 위해 인간의 손가락과 유사한 구조의 재질 온도응답센서를 제작하고, 하드웨어를 구현하였으며, 곡선근사화와 뉴로퍼지 알고리즘에 의한 분류 소프트웨어를 개발하였다.

  • PDF

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

기상예보정보를 활용한 월 댐유입량 예측 (Monthly Dam Inflow Forecasts by Using Weather Forecasting Information)

  • 정대명;배덕효
    • 한국수자원학회논문집
    • /
    • 제37권6호
    • /
    • pp.449-460
    • /
    • 2004
  • 본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)방법 중 하나인 차감 클러스터링(Subtractive Clustering)을 사용하였다. 또한 본 연구에서는 정성적인 기상예보정보를 정량화 시키는 방법을 제안하였다. AMFIS를 이용하여 월 댐유입량 예측 시, 관측자료만으로 구성된 모형에 의한 예측결과와 관측자료에 기상예보정보를 더하여 구성된 모형에 의한 예측결과를 비교하였다. 그 결과 ANFIS는 기상예보정보를 활용하여 댐유입량을 예측했을 때가 관측자료만으로 예측했을 때보다 예측능력이 더욱 정확함을 보였다.

Temperature Inference System by Rough-Neuro-Fuzzy Network

  • Il Hun jung;Park, Hae jin;Kang, Yun-Seok;Kim, Jae-In;Lee, Hong-Won;Jeon, Hong-Tae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.296-301
    • /
    • 1998
  • The Rough Set theory suggested by Pawlak in 1982 has been useful in AI, machine learning, knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning. etc. The main advantages of rough set are that it does not need any preliminary or additional information about data and reduce the superfluous informations. but it is a significant disadvantage in the real application that the inference result form is not the real control value but the divided disjoint interval attribute. In order to overcome this difficulty, we will propose approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal rule base from lots of input/output datum. These results are applied to the rule construction for infering the temperatures of refrigerator's specified points.

  • PDF